首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu T  Ye Z 《Journal of virology》2002,76(24):13055-13061
The matrix protein (M1) of influenza virus plays an essential role in viral assembly and has a variety of functions, including association with influenza virus ribonucleoprotein (RNP). Our previous studies show that the association of M1 with viral RNA and nucleoprotein not only promotes formation of helical RNP but also is required for export of RNP from the nucleus during viral replication. The RNA-binding domains of M1 have been mapped to two independent regions: a zinc finger motif at amino acid positions 148 to 162 and a series of basic amino acids (RKLKR) at amino acid positions 101 to 105, which is also involved in RNP-binding activity. To further understand the role of the RNP-binding domain of M1 in viral assembly and replication, mutations in the coding sequences of RKLKR and the zinc finger motif of M1 were constructed using a PCR technique and introduced into wild-type influenza virus by reverse genetics. Altering the zinc finger motif of M1 only slightly affected viral growth. Substitution of Arg with Ser at position 101 or 105 of RKLKR did not have a major impact on nuclear export of RNP or viral replication. In contrast, deletion of RKLKR or substitution of Lys with Asn at position 102 or 104 of RKLKR resulted in a lethal mutation. These results indicate that the RKLKR domain of M1 protein plays an important role in viral replication.  相似文献   

2.
3.
J Dannull  A Surovoy  G Jung    K Moelling 《The EMBO journal》1994,13(7):1525-1533
The nucleocapsid (NC) protein of human immunodeficiency virus HIV-1 (NCp7) is responsible for packaging the viral RNA by recognizing a packaging site (PSI) on the viral RNA genome. NCp7 is a molecule of 55 amino acids containing two zinc fingers, with only the first one being highly conserved among retroviruses. The first zinc finger is flanked by two basic amino acid clusters. Here we demonstrate that chemically synthesized NCp7 specifically binds to viral RNA containing the PSI using competitive filter binding assays. Deletion of the PSI from the RNA abrogates this effect. The 35 N-terminal amino acids of NCp7, comprising the first zinc finger, are sufficient for specific RNA binding. Chemically synthesized mutants of the first zinc finger demonstrate that the amino acid residues C-C-C/H-C/H are required for specific RNA binding and zinc coordination. Amino acid residues F16 and T24, but not K20, E21 and G22, located within this zinc finger, are essential for specific RNA binding as well. The second zinc finger cannot replace the first one. Furthermore, mutations in the basic amino acid residues flanking the first zinc finger demonstrate that R3, 7, 10, 29 and 32 but not K11, 14, 33 and 34 are also essential for specific binding. Specific binding to viral RNA is also observed with recombinant NCp15 and Pr55Gag. The results demonstrate for the first time specific interaction of a retroviral NC protein with its PSI RNA in vitro.  相似文献   

4.
The zinc fingers of retroviral gag nucleocapsid proteins (NC) are required for the specific packaging of the dimeric RNA genome into virions. In vitro, NC proteins activate both dimerization of viral RNA and annealing of the replication primer tRNA onto viral RNA, two reactions necessary for the production of infectious virions. In this study the role of the zinc finger of Moloney murine leukemia virus (MoMuLV) NCp10 in RNA binding and annealing activities was investigated through modification or replacement of residues involved in zinc coordination. These alterations did not affect the ability of NCp10 to bind RNA and promote RNA annealing in vitro, despite a complete loss of zinc affinity. However mutation of two conserved lysine residues adjacent to the finger motif reduced both RNA binding and annealing activities of NCp10. These findings suggest that the complexed NC zinc finger is not directly involved in RNA-protein interactions but more probably in a zinc dependent conformation of NC protein modulating viral protein-protein interactions, essential to the process of viral RNA selection and virion assembly. Then the NC zinc finger may cooperate to select the viral RNA genome to be packaged into virions.  相似文献   

5.
Liu T  Ye Z 《Journal of virology》2004,78(18):9585-9591
Our previous studies with influenza A viruses indicated that the association of M1 with viral RNA and nucleoprotein (NP) is required for the efficient formation of helical ribonucleoprotein (RNP) and for the nuclear export of RNPs. RNA-binding domains of M1 map to the following two independent regions: a zinc finger motif at amino acid positions 148 to 162 and a series of basic amino acids (RKLKR) at amino acid positions 101 to 105. Altering the zinc finger motif of M1 reduces viral growth slightly. A substitution of Ser for Arg at either position 101 or position 105 of the RKLKR domain partially reduces the nuclear export of RNP and viral replication. To further understand the role of the zinc finger motif and the RKLKR domain in viral assembly and replication, we introduced multiple mutations by using reverse genetics to modify these regions of the M gene of influenza virus A/WSN/33. Of multiple mutants analyzed, a double mutant, R101S-R105S, of RKLKR resulted in a temperature-sensitive phenotype. The R101S-R105S double mutant had a greatly reduced ratio of M1 to NP in viral particles and a weaker binding of M1 to RNPs. These results suggest that mutations can be introduced into the RKLKR domain to control viral replication.  相似文献   

6.
7.
8.
9.
The RNA packaging process for retroviruses involves a recognition event of the genome-length viral RNA by the viral Gag polyprotein precursor (PrGag), an important step in particle morphogenesis. The mechanism underlying this genome recognition event for most retroviruses is thought to involve an interaction between the nucleocapsid (NC) domain of PrGag and stable RNA secondary structures that form the RNA packaging signal. Presently, there is limited information regarding PrGag-RNA interactions involved in RNA packaging for the deltaretroviruses, which include bovine leukemia virus (BLV) and human T-cell leukemia virus types 1 and 2 (HTLV-1 and -2, respectively). To address this, alanine-scanning mutagenesis of BLV PrGag was done with a virus-like particle (VLP) system. As predicted, mutagenesis of conserved basic residues as well as residues of the zinc finger domains in the BLV NC domain of PrGag revealed residues that led to a reduction in viral RNA packaging. Interestingly, when conserved basic residues in the BLV MA domain of PrGag were mutated to alanine or glycine, but not when mutated to another basic residue, reductions in viral RNA packaging were also observed. The ability of PrGag to be targeted to the cell membrane was not affected by these mutations in MA, indicating that PrGag membrane targeting was not associated with the reduction in RNA packaging. These observations indicate that these basic residues in the MA domain of PrGag influence RNA packaging, without influencing Gag membrane localization. It was further observed that (i) a MA/NC double mutant had a more severe RNA packaging defect than either mutant alone, and (ii) RNA packaging was not found to be associated with transient localization of Gag in the nucleus. In summary, this report provides the first direct evidence for the involvement of both the BLV MA and NC domains of PrGag in viral RNA packaging.  相似文献   

10.
11.
12.
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses harbor short peptide motifs in Gag that promote the release of infectious virions. These motifs, known as late assembly (L) domains, recruit a cellular budding machinery that is required for the formation of multivesicular bodies (MVBs). The primary L domain of HIV-1 maps to a PTAP motif in the p6 region of Gag and engages the MVB pathway by binding to Tsg101. Additionally, HIV-1 p6 harbors an auxiliary L domain that binds to the V domain of ALIX, another component of the MVB pathway. We now show that ALIX also binds to the nucleocapsid (NC) domain of HIV-1 Gag and that ALIX and its isolated Bro1 domain can be specifically packaged into viral particles via NC. The interaction with ALIX depended on the zinc fingers of NC, which mediate the specific packaging of genomic viral RNA, but was not disrupted by nuclease treatment. We also observed that HIV-1 zinc finger mutants were defective for particle production and exhibited a similar defect in Gag processing as a PTAP deletion mutant. The effects of the zinc finger and PTAP mutations were not additive, suggesting a functional relationship between NC and p6. However, in contrast to the PTAP deletion mutant, the double mutants could not be rescued by overexpressing ALIX, further supporting the notion that NC plays a role in virus release.  相似文献   

13.
The 3' terminal 1.4 kb segment of potato virus M (PVM) genomic RNA was cloned and sequenced. This part of the viral genome encodes the capsid protein CP as well as a 12 kDa protein of as yet unknown function. Both proteins were expressed in bacteria and their nucleic acid-binding properties studied. The 12 kDa protein (pr12), but not the capsid protein bound single- and double-stranded nucleic acids. This property of pr12 in conjunction with a zinc finger motif located adjacent to a basic region of the 12 kDa protein suggests that it may act as a regulatory factor during virus replication.  相似文献   

14.
15.
16.
17.
18.
19.
R Quadt  E M Jaspars 《FEBS letters》1991,278(1):61-62
The necessity of coat protein for infection of plants by alfalfa mosaic virus (AIMV) and other ilarviruses distinguishes this virus group from other plant virus groups. Recently, the presence of both a zinc-finger type motif and zinc in AIMV coat protein was described [(1989) Virology 168, 48-56]. We studied the effect of a zinc chelator on viral RNA synthesis. Strong inhibition of AIMV RNA-dependent RNA polymerase (RdRp) by ortho-phenanthroline (OP) was observed.  相似文献   

20.
Several zinc finger proteins have been discovered recently that bind specifically to double-stranded RNA. These include the mammalian JAZ and wig proteins, and the seven-zinc finger protein ZFa from Xenopus laevis. We have determined the solution structure of a 127 residue fragment of ZFa, which consists of two zinc finger domains connected by a linker that remains unstructured in the free protein in solution. The first zinc finger consists of a three-stranded beta-sheet and three helices, while the second finger contains only a two-stranded sheet and two helices. The common structures of the core regions of the two fingers are superimposable. Each finger has a highly electropositive surface that maps to a helix-kink-helix motif. There is no evidence for interactions between the two fingers, consistent with the length (24 residues) and unstructured nature of the intervening linker. Comparison with a number of other proteins shows similarities in the topology and arrangement of secondary structure elements with canonical DNA-binding zinc fingers, with protein interaction motifs such as FOG zinc fingers, and with other DNA-binding and RNA-binding proteins that do not contain zinc. However, in none of these cases does the alignment of these structures with the ZFa zinc fingers produce a consistent picture of a plausible RNA-binding interface. We conclude that the ZFa zinc fingers represent a new motif for the binding of double-stranded RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号