首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The activity of porcine galanin (Gal) fragments and analogues were tested in vitro using rat gastric fundus strips. The peptides contracted longitudinal smooth muscle in a concentration-dependent manner with the following order of potency: [Nle4]Gal(1-15), Gal(-15), [Cle4]Gal(1-15), [Hse6]Gal(1-15), [Va14]Gal(1-15), [Ile4]Gal(1-15), [endoTrip2a, Cle4]Gal(1-15), [desThr3, Cle4]Gal(1-15), [D-Leu4] Gal(1-15), [desLeu4]Gal(1-15). On the contrary [desTrp2, Val4]Gal (1-15) remained inactive up to 10 microM. The values of Hill's coefficients estimated from the appropriate concentration-contraction curves for all analogues except for [Val4]Gal(1-15), [Hse6]Gal(1-15), [endoTrp2a,Cle4]Gal(1-15), [desLeu4]Gal(1-15) and [D-Leu4] Gal(1-15) did not significantly differ from unity. Our results indicate that the integrity of the first four N-terminal amino acids of Gal molecule is essential for the full excitatory myogenic action of the peptide in rat gastric fundus. Similarly, substitution, addition or deletion of amino acid residues in positions two, three, four and six can considerably influence the ability of Gal analogues to interact with Gal receptors. The data acquired in the course of our structure-activity study suggest that both N- and C-terminals of Gal molecule contribute towards the affinity and activity of Gal in rat gastric smooth muscle cell receptors.  相似文献   

2.
To define the specific role of the galanin receptors when mediating the effect of galanin, effective tools for distinct activation and inhibition of the different receptor subtypes are required. Several of the physiological effects modulated by galanin are implicated to be mediated via the GalR2 subtype and have been distinguished from GalR1 effects by utilizing the Gal(2–11) peptide, recognizing only GalR2 and GalR3. In this study, we have performed a mutagenesis approach on the GalR2 subtype and present, for the first time, a molecular characterization of the interactions responsible for ligand binding and receptor activation at this receptor subtype. Our results identify four residues, His252 and His253 located in transmembrane domain 6 and Phe264 and Tyr271 in the extracellular loop 3, to be of great significance. We show evidence for the N-terminal tail of GalR2 to participate in ligand binding and that selective binding of Gal(2–11) includes interaction with the Ile256 residue, located at the very top of TM 6. In conclusion, we present a mutagenesis study on GalR2 and confer interactions responsible for ligand binding and receptor activation as well as selective recognition of the Gal(2–11) peptide at this receptor subtype. The presented observations could be of major importance for the design and development of new and improved peptide and non-peptide ligands, selectively activating the GalR2 subtype.  相似文献   

3.
The N-terminal 1-34 fragments of the parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) elicit the full spectrum of bone-related biological activities of the intact native sequences. It has been suggested that the structural elements essential for bioactivity are two helical segments located at the N-terminal and C-terminal sequences, connected by hinges or flexible points around positions 12 and 19. In order to assess the relevance of the local conformation around Gly(12) upon biological function, we synthesized and characterized the following PTH(1-34) analogues containing Aib residues: (I) A-V-S-E-I-Q-F-nL-H-N-Aib-G-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(11), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (II) A-V-S-E-I-Q-F-nL-H-N-L-Aib-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(12),Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (III) A-V-S-E-I-Q-F-nL-H-N-L-G-Aib-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(13), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (IV) A-V-S-E-I-Q-F-nL-H-N-Aib-Aib-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-YNH(2) ([Nle(8,18), Aib(11,12), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (V) A-V-S-E-I-Q-F-nL-H-N-L-Aib-Aib-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(12,13),Nal(23),Tyr(34)]bPTH(1-34)-NH(2)). (nL= Nle; Nal= L-(2-naphthyl)-alanine; Aib= alpha-amino-isobutyric acid.) The introduction of Aib residues at position 11 in analogue I or at positions 11 and 12 in analogue IV resulted in a 5-20-fold lower efficacy and a substantial loss of binding affinity compared to the parent compound [Nle(8,18), Nal(23),Tyr(34)]bPTH(1-34)-NH(2). Both binding affinity and adenylyl cyclase stimulation activity are largely restored when the Aib residues are introduced at position 12 in analogue II, 13 in analogue III, and 12-13 in analogue V. The conformational properties of the analogues in aqueous solution containing dodecylphosphocholine micelles were studied by CD, two-dimensional (2D) NMR and computer simulations. The results indicated the presence of two helical segments in all analogues, located at the N-terminal and C-terminal sequences. Insertion of Aib residues at positions 12 and 13, or of Aib dyads at positions 11-12 and 12-13, enhances the stability of the N-terminal helix of all analogues. In all analogues the Aib residues are included in the helical segments. These results confirmed the importance of the helical structure in the N-terminal activation domain, as well as of the presence of the Leu(11) hydrophobic side chain in the native sequence, for PTH-like bioactivity.  相似文献   

4.
Two side-chain cyclic lactam analogues of the 4-11 fragment of alpha-melanocyte-stimulating hormone (alpha-MSH), Ac-[Nle4,D-Orn5,Glu8]alpha-MSH4-11-NH2 and Ac-[Nle4,D-Orn5,D-Phe7,Glu8]alpha-MSH4-11-NH2, were prepared on p-methylbenzhydrylamine resin by using a combination of N alpha-Boc and N alpha-Fmoc synthetic strategies with diphenyl phosphorazidate mediated cyclization. The melanotropin activities of these two analogues were examined and compared relative to those of alpha-MSH, Ac-[Nle4]alpha-MSH4-11-NH2, and Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. In the frog (Rana pipiens) skin bioassay, the L-Phe7 17-membered ring cyclic analogue was slightly more potent than the linear Ac-[Nle4]alpha-MSH4-11-NH2 and exhibited prolonged melanotropic bioactivity (greater than or equal to 4 h). In this same assay, the D-Phe7 cyclic analogue was more than 100-fold less potent than the L-Phe cyclic analogue and was 10,000 times less potent than linear Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. In the lizard skin (Anolis carolinensis) bioassay, the L-Phe7 cyclic analogue was 100-fold less potent than Ac-[Nle4]alpha-MSH4-11-NH2, while the D-Phe7 cyclic analogue was 10,000-fold less potent than both Ac-[Nle4]alpha-MSH4-11-NH2 and the D-Phe7 linear derivative Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. The solution conformation of these two cyclic analogues in dimethyl sulfoxide-d6 was examined by 1D and 2D 500-MHz 1H NMR spectroscopy. Our analysis suggests an H bond stabilized C10 (or C13) turn for the D-Phe7 cyclic structure while the L-Phe7 analogue is more conformationally flexible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Solution structures were determined for a linear analogue of growth hormone releasing factor (GRF), and cyclic and dicyclic analogues in which the side chains of aspartyl and lysyl residues spaced at positions i-(i + 4) were joined to form a lactam. The four analogues were [Ala15]-GRF-(1-29)-NH2 and its cyclo8-12, cyclo21-25, and dicyclo8-12;21-25 derivatives. The peptides were studied in two solvent systems: 75% methanol/25% water at pH 6.0; and 100% water at pH 3.0. CD spectroscopy was used to assess the overall alpha-helical content. Nuclear magnetic resonance spectroscopy was used to determine the structures in more detail. Nearly complete proton resonance assignments were made for each of the peptides, in both solvents. Nuclear Overhauser effects were converted into distance constraints and applied in the molecular dynamics program CHARMM to evaluate the range of low-energy structures that satisfied the nmr data. In 75% methanol, all of the peptides are comprised of a single alpha-helical segment with fraying of one to three residues at each end. The linear analogue has a tendency to kink. In water, the analogues have two helical segments with flexible regions between them and at the termini of the peptides. The linear analogue is helical at residues 7-14 and 21-28. In the cyclo8-12 analogue, the N-terminal helical region extends to include residues 7-19, while the other helical region is slightly shortened. In the cyclo21-25 analogue, the C-terminal helical region is extended to include residues 19-28, while the N-terminal helical region is destabilized. The dicyclic analogue has the largest N-terminal helix, spanning residues 7-20, but its helical segment at residues 21-28 is not well ordered. All of the analogues exhibit substantial biological activity. The cyclic and dicyclic analogues show dramatically increased resistance to degradation during incubation with human plasma. The i-(i + 4) lactam, therefore, appears to be a synthetic means of stabilizing a local alpha-helical conformation, which may be of general use in the design of active, stable peptides.  相似文献   

6.
Several chimeric peptides consisting of the N-terminal fragment of galanin (GAL) and C-terminal fragments of other bioactive peptides (e.g. substance P, bradykinin, neuropeptide Y, mastoparan) have been synthesized and reported as high-affinity galanin receptor antagonists. Recently we have synthesized a new chimeric peptide, GAL(1-13)-[Ala(10,11)]ET-1(6-21)-NH(2), consisting of the N-terminal fragment of GAL and the C-terminal fragment of endothelin-1 (ET-1) analogue. This chimera was previously shown to be a moderate-affinity ligand to hypothalamic galanin receptors with a K(D) value of 205 nM. However, its biological action has been unknown so far. In our studies we characterized the biological properties of this new chimeric analogue, investigating its action on rat isolated gastric smooth muscles and influence on insulin secretion from rat isolated islets of Langerhans. Data acquired in the course of our studies suggest that analogue GAL(1-13)-[Ala(10,11)]ET-1(6-21)-NH(2) does not seem to be a potent galanin receptor antagonist in the gastrointestinal tract.  相似文献   

7.
Abstract: The diverse physiological actions of galanin are thought to be mediated through activation of galanin receptors (GalRs). We report the genomic and cDNA cloning of a mouse GalR that possesses a genomic structure distinct from that of GalR1 and encodes a functional galanin receptor. The mouse GalR gene consists of two exons separated by a single intron within the protein-coding region. The splicing site for the intron is located at the junction between the third transmembrane domain and the second intracellular loop. The cDNA encodes a 370-amino acid putative G protein-coupled receptor that is markedly different from human GalR1 and rat GalR3 (38 and 57%) but shares high homology with rat GalR2 (94%). In binding studies utilizing membranes from COS-7 cells transfected with mouse GalR2 cDNA, the receptor displayed high affinity ( K D = 0.47 n M ) and saturable binding with 125I-galanin ( B max = 670 fmol/mg). The radioligand binding can be displaced by galanin and its analogues in a rank order: galanin ⋍ M40 ⋍ M15 ⋍ M35 ⋍ C7 ⋍ galanin (2–29) ⋍ galanin (1–16) ≫ galanin (10–29) ⋍ galanin (3–29), which resembles the pharmacological profile of the rat GalR2. Receptor activation by galanin in COS-7 cells stimulated phosphoinositide metabolism, which was not reversed by pertussis toxin. Thus, the galanin receptor encoded in the cloned mouse GalR gene is the type 2 galanin receptor and is active in both ligand binding and signaling assays.  相似文献   

8.
The neuropeptide galanin and its three receptor subtypes (Gal R1-3) are highly expressed in the dorsal raphe nucleus (DRN), a region of the brain that contains a large population of serotonergic neurons. Galanin is co-expressed with serotonin in approximately 40% of the DRN neurons, and galanin and GALR2 expression are elevated by antidepressants like the SSRI fluoxetine, suggesting an interaction between serotonin and galanin. The present study examines the effect of galanin (Gal 1–29), a pan ligand for GalR (1–3) and the GalR2/GalR3-selective ligand, Gal 2–11, on the electrophysiological properties of DRN serotonergic neurons in a slice preparation. We recorded from cells in the DRN with electrophysiological characteristics consistent with those of serotonergic neurons that exhibit high input resistance, large after-hyperpolarizations and long spike duration as defined by Aghajanian and Vandermaelen. Both Gal 1–29 and Gal 2–11 decreased the amplitudes pharmacologically-isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in these putative serotonergic neurons. Furthermore, based on paired pulse facilitation studies, we show that Gal 1–29 likely decreases GABA release through a presynaptic mechanism, whereas Gal 2–11 may act postsynaptically. These findings may enhance understanding of the cellular mechanisms underlying the effects of antidepressant treatments on galanin and galanin receptors in DRN. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

9.
Grieco P  Cai M  Mayorov AV  Trivedi D  Hruby VJ 《Peptides》2006,27(2):472-481
Cyclic melanotropin peptides, designed with an aromatic amino acid substitution at the N-terminal position of the MT-II-type scaffold, were prepared by solid-phase peptide synthesis and evaluated for their ability to bind to and activate human melanocortin-1, -3, -4, and -5 receptors. The structure-activity studies of these MT-II analogues have identified a selective antagonist at the hMC4R (H-Phe-c[Asp-Pro-d-Nal(2')-Arg-Trp-Gly-Lys]-NH(2), pA(2)=8.7), a selective partial agonist at the hMC4R (H-d-Nal(2')-c[Asp-Pro-d-Phe-Arg-Trp-Gly-Lys]-NH(2), IC(50)=11nM, EC(50)=56nM), and a selective partial agonist at the hMC3R (H-d-Phe-c[Asp-Pro-d-Phe-Arg-Trp-Lys]-NH(2), IC(50)=3.7nM, EC(50)=4.9nM). Aromatic amino acid substitution at the N-terminus in conjuction with the expansion of the 23-membered cyclic lactam MT-II scaffold to a 26-membered scaffold by addition of a Gly residue in position 10 leads to melanotropin peptides with enhanced receptor selectivity.  相似文献   

10.
H M Cox  J L Krstenansky 《Peptides》1991,12(2):323-327
The antisecretory potency of NPY and a series of truncated and structural analogues of NPY have been tested upon mucosal preparations of rat small intestine. Single amino acid substitutions, i.e., [Ile34]NPY, [Pro34]NPY, resulted in severe attenuation and loss of biological activity, respectively, and neither peptide affected NPY responses. An agonist order of potency: NPY greater than or equal to [Glu16,Ser18,Ala22,Leu28,31]NPY (ESALL-NPY) greater than [Cys2,Aoc5-24,DCys27]NPY (C2-NPY) greater than [Aoc5-24]NPY greater than [Des-Ser3,Des- Lys4]C2-NPY much greater than [Cys5,Aoc7-20,DCys24]NPY (C5-NPY) greater than equal to [DCys7,Aoc8-17, Cys20]NPY (C7-NPY) greater than [Aoc8-17]NPY greater than or equal to [Ile34]C7-NPY much greater than [Aoc2-27]NPY much greater than [Pro34]C2-NPY was obtained. The use of analogues based upon the tertiary structural model of NPY with varying amounts of N- and C-terminal helical regions removed and replaced with a single 8-aminooctanoic acid residue (Aoc) has allowed us to assess the structural requirements for activation of the regions in close apposition to each other. The polyproline helix, beta-turn and majority of the amphipathic alpha-helix serve a structural role bringing N- and C-terminal residues together for optimal receptor recognition and activation.  相似文献   

11.
Galanin fragments and galanin analogues were tested on neurally evoked muscle contractions in guinea-pig ileum in vitro. Galanin fragments inhibited the neurally evoked circular muscle contractions with the following order of potency: Galanin(1-29), galanin(2-29), galanin(1-15). In contrast, galanin(3-29), galanin(10-29), galanin(21-29), [D-Trp2]galanin, [Phe2]galanin and [Tyr2]galanin were ineffective. Galanin(1-29), galanin(2-29) and galanin(1-15) did not affect the neurally evoked longitudinal muscle contractions. These results indicate that (1) the two N-terminal amino acid residues of the galanin molecule are essential for the inhibitory action of galanin on neurally-evoked circular muscle contraction and (2) for the full potency also the C-terminal end is required.  相似文献   

12.
N3 is the third position from the N terminus in the alpha-helix with helical backbone dihedral angles. All 20 amino acids have been placed in the N3 position of a synthetic helical peptide (CH(3)CO-[AAX AAAAKAAAAKAGY]-NH(2)) and the helix content measured by circular dichroism spectroscopy at 273 K. The dependence of peptide helicity on N3 residue identity has been used to determine a free energy scale by analysis with a modified Lifson-Roig helix coil theory that includes a parameter for the N3 energy (n3). The most stabilizing residues at N3 in rank order are Ala, Glu, Met/Ile, Leu, Lys, Ser, Gln, Thr, Tyr, Phe, Asp, His, and Trp. Free energies for the most destabilizing residues (Cys, Gly, Asn, Arg, and Pro) could not be fitted. The results correlate with N1, N2, and helix interior energies and not at all with N-cap preferences. This completes our work on studying the structural and energetic preferences of the amino acids for the N-terminal positions of the alpha-helix. These results can be used to rationally modify protein stability, help design helices, and improve prediction of helix location and stability.  相似文献   

13.
The three cloned galanin receptors show a higher affinity for galanin than for galanin N-terminal fragments. Galanin fragment (1–15) binding sites were discovered in the rat Central Nervous System, especially in dorsal hippocampus, indicating a relevant role of galanin fragments in central galanin communication. The hypothesis was introduced that these N-terminal galanin fragment preferring sites are formed through the formation of GalR1–GalR2 heteromers which may play a significant role in mediating galanin fragment (1–15) signaling. In HEK293T cells evidence for the existence of GalR1–GalR2 heteroreceptor complexes were obtained with proximity ligation and BRET2 assays. PLA positive blobs representing GalR1–GalR2 heteroreceptor complexes were also observed in the raphe-hippocampal system. In CRE luciferase reporter gene assays, galanin (1–15) was more potent than galanin (1–29) in inhibiting the forskolin-induced increase of luciferase activity in GalR1–GalR2 transfected cells. The inhibition of CREB by 50 nM of galanin (1–15) and of galanin (1–29) was fully counteracted by the non-selective galanin antagonist M35 and the selective GalR2 antagonist M871. These results suggested that the orthosteric agonist binding site of GalR1 protomer may have an increased affinity for the galanin (1–15) vs galanin (1–29) which can lead to its demonstrated increase in potency to inhibit CREB vs galanin (1–29). In contrast, in NFAT reporter gene assays galanin (1–29) shows a higher efficacy than galanin (1–15) in increasing Gq/11 mediated signaling over the GalR2 of these heteroreceptor complexes. This disbalance in the signaling of the GalR1–GalR2 heteroreceptor complexes induced by galanin (1–15) may contribute to depression-like actions since GalR1 agonists produce such effects.  相似文献   

14.
Galanin-like peptide (GALP) is currently the only known galanin(1-29) homologue. However, three different galanin receptors, of which GalR3 exhibits comparatively low affinity for galanin(1-29), and molecular heterogeneity of immunoreactive galanin are arguments for presence of other endogenous galanin homologues. Since antibodies recognize three-dimensional structures of 3–5 amino acids in a peptide, we raised antibodies in rabbits against galanin(1-16) conjugated to bovine serum albumin, looking for the presence of endogenous N-terminal galanin homologues in rat tissues. The antiserum selected had 7,830 times higher avidity for galanin(1-16) compared to galanin(1-29). A single immunoreactive component with a Stokes radius of about 8 amino acids was found. Immunohistochemistry strongly suggested that this immunoreactivity is localised in the same neurons as galanin(1-29). Furthermore, its concentration was increased in response to estrogen treatment in the same brain regions as galanin(1-29), although not as rapidly. The present results indicate the presence of a novel endogenous N-terminal galanin homologue.Special Issue Dedicated to Miklós Palkovits.  相似文献   

15.
The solid-phase synthesis and in vitro assays on the glucose-induced insulin secretion from rat pancreatic islets of Langerhans with six new chimeric peptides were performed. All the peptides were built up of the N-terminal galanin (GAL) fragment or its analogues, linked to the C-terminal portion of substance P (SP) analogues or scyliorhinin I (SCY-I) analogues. Two strong antagonists of the inhibitory effect of galanin on the glucose-induced insulin release were found: [cycloleucine4]GAL(1-13)-SP(5-11)-amide and GAL(1-13)-[L-norleucine10]SCY-I(3-10)-amide.  相似文献   

16.
We have prepared several alpha-melanotropin (alpha-MSH) analogues with tyrosine substituted for methionine at the 4-position and determined their melanotropic activities on the frog (Rana pipiens), lizard (Anolis carolinensis) and S-91 (Cloudman) mouse melanoma adenylate cyclase bioassays. The potencies of Ac-[Tyr4]-alpha-MSH4-10-NH2 and Ac-[Tyr4]-alpha-MSH4-11-NH2 were compared with alpha-MSH and with their corresponding methionine and norleucine substituted analogues. The Tyr-4 analogues were found to be less active than the Nle-4 analogues on both the frog and lizard assays. Ac-[Tyr4]-alpha-MSH4-10-NH2 was found to be less active than Ac-[Tyr4]-alpha-MSH4-11-NH2 on the lizard bioassay, but more active than the longer fragment on the frog skin assay. Ac-[Tyr4]-alpha-MSH4-10-NH2 exhibited extremely prolonged biological activity on frog skin, but not on lizard skin, while the melanotropic activity of Ac-[Tyr4]-alpha-MSH4-11-NH2 was rapidly reversed on both assay systems. The increased potency of Ac-[Tyr4]-alpha-MSH4-10-NH2 over Ac-[Tyr4]-alpha-MSH4-11-NH2 on frog melanocytes may be related to the fact that the shorter 4-10 analogue exhibits prolonged biological activity. Interestingly, it was found that both Tyr-4 analogues were partial agonists on the mouse melanoma adenylate cyclase bioassay, and stimulated the enzyme to only about 50% of the maximal activity of alpha-MSH. We reported previously that replacement of L-Phe-7 by its D-enantiomer in [Nle4]-alpha-MSH and its Nle-4 containing analogues resulted in peptides with increased potency and in some instances prolonged activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Xu X  Yang X  Zhang P  Chen X  Liu H  Li Z 《PloS one》2012,7(5):e37621
A large number of neuroanatomical, neurophysiologic, and neurochemical mechanisms are thought to contribute to the development and maintenance of neuropathic pain. However, mechanisms responsible for neuropathic pain have not been completely delineated. It has been demonstrated that neuropeptide galanin (Gal) is upregulated after injury in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) where it plays a predominantly antinociceptive role. In the present study, sciatic nerve-pinch injury rat model was used to determine the effects of exogenous Gal on the expression of the Gal and its receptors (GalR1, GalR2) in DRG and SDH, the alterations of pain behavior, nerve conduction velocity (NCV) and morphology of sciatic nerve. The results showed that exogenous Gal had antinociceptive effects in this nerve-pinch injury induced neuropathic pain animal model. It is very interesting that Gal, GalR1 and GalR2 change their expression greatly in DRG and SDH after nerve injury and intrathecal injection of exougenous Gal. Morphological investigation displays a serious damage after nerve-pinch injury and an amendatory regeneration after exogenous Gal treatment. These findings imply that Gal, via activation of GalR1 and/or GalR2, may have neuroprotective effects in reducing neuropathic pain behaviors and improving nerve regeneration after nerve injury.  相似文献   

18.
The 37-amino acid calcitonin gene-related peptide (CGRP) is a potent endogenous vasodilator thought to be implicated in the genesis of migraine attack. CGRP antagonists may thus have therapeutic value for the treatment of migraine. The CGRP C-terminally derived peptide [D(31),P(34),F(35)]CGRP(27-37)-NH(2) was recently identified as a high-affinity hCGRP(1) receptor selective antagonist. Reasonable CGRP(1) affinity has also been demonstrated for several related analogues, including [D(31),A(34),F(35)]CGRP(27-37)-NH(2). In the study presented here, conformational and structural features in CGRP(27-37)-NH(2) analogues that are important for hCGRP(1) receptor binding were explored. Structure-activity studies carried out on [D(31),P(34),F(35)]CGRP(27-37)-NH(2) resulted in [D(31),P(34),F(35)]CGRP(30-37)-NH(2), the shortest reported CGRP C-terminal peptide analogue exhibiting reasonable hCGRP(1) receptor affinity (K(i) = 29.6 nM). Further removal of T(30) from the peptide's N-terminus greatly reduced receptor affinity from the nanomolar to micromolar range. Additional residues deemed critical for hCGRP(1) receptor binding were identified from an alanine scan of [A(34),F(35)]CGRP(28-37)-NH(2) and included V(32) and F(37). Replacement of the C-terminal amide in this same peptide with a carboxyl, furthermore, resulted in a greater than 50-fold reduction in hCGRP(1) affinity, thus suggesting a direct role for the amide moiety in receptor binding. The conformational properties of two classes of CGRP(27-37)-NH(2) peptides, [D(31),X(34),F(35)]CGRP(27-37)-NH(2) (X is A or P), were examined by NMR spectroscopy and molecular modeling. A beta-turn centered on P(29) was a notable feature consistently observed among active peptides in both series. This turn led to exposure of the critical T(30) residue to the surrounding environment. Peptides in the A(34) series were additionally characterized by a stable C-terminal helical turn that resulted in the three important residues (T(30), V(32), and F(37)) adopting consistent interspatial positions with respect to one another. Peptides in the P(34) series were comparatively more flexible at the C-terminus, although a large proportion of the [D(31),P(34),F(35)]CGRP(27-37)-NH(2) calculated conformers contained a gamma-turn centered on P(34). These results collectively suggest that turn structures at both the C-terminus and N-terminus of CGRP(27-37)-NH(2) analogues may help to appropriately orient critical residues (T(30), V(32), and F(37)) for hCGRP(1) receptor binding.  相似文献   

19.
Type 2 diabetes impairs adult neurogenesis which could play a role in the CNS complications of this serious disease. The goal of this study was to determine the potential role of galanin in protecting adult neural stem cells (NSCs) from glucolipotoxicity and to analyze whether apoptosis and the unfolded protein response were involved in the galanin‐mediated effect. We also studied the regulation of galanin and its receptor subtypes under diabetes in NSCs in vitro and in the subventricular zone (SVZ) in vivo. The viability of mouse SVZ‐derived NSCs and the involvement of apoptosis (Bcl‐2, cleaved caspase‐3) and unfolded protein response [C/EBP homologous protein (CHOP) Glucose‐regulated protein 78/immunoglobulin heavy‐chain binding protein (GRP78/BiP), spliced X‐box binding protein 1 (XBP1), c‐Jun N‐terminal kinases (JNK) phosphorylation] were assessed in the presence of glucolipotoxic conditions after 24 h. The effect of diabetes on the regulation of galanin and its receptor subtypes was assessed on NSCs in vitro and in SVZ tissues isolated from normal and type 2 diabetes ob/ob mice. We show increased NSC viability following galanin receptor (GalR)3 activation. This protective effect correlated with decreased apoptosis and CHOP levels. We also report how galanin and its receptors are regulated by diabetes in vitro and in vivo. This study shows GalR3‐mediated neuroprotection, supporting a potential future therapeutic development, based on GalR3 activation, for the treatment of brain disorders.

  相似文献   


20.
Conformational flexibility and biological activity of salmon calcitonin   总被引:3,自引:0,他引:3  
We have assessed the biological activity of salmon calcitonin I (sCT) using an in vivo biological assay of hypocalcemic activity in rats. The changes in biological activity observed are explained on the basis of changes in the conformational properties of the hormone analogues. Helical content in the presence and absence of lipids and detergents was assessed by using circular dichroism, and the section of the molecule that folds into a helix was predicted on the basis of the helix-coil transition theory of Mattice and co-workers. In the amino acid sequence of sCT, residue 8 is valine and residue 16 is leucine. The synthetic calcitonin derivatives [Gly8]sCT and [Ala16]sCT have higher biological activity than the native hormone although they have a lower helical content. The increased biological activity of these derivatives is ascribed to an increase in their conformational flexibility resulting from the substitution of amino acid residues with less bulky side chains and less tendency to form helical structures. The derivative [Met8]sCT has less substitution than sCT on the beta-carbon at position 8, but it has increased helix-forming potential in the region of residues 8-12. These two factors affect conformational flexibility in opposite ways, resulting in the biological activity of [Met8]sCT being slightly higher than that of sCT. However, increased conformational flexibility does not always increase biological activity. Substitution of the L-arginine at residue 24 for a D-arginine has little effect on the conformational properties or biological activity of sCT. However, [Gly8, D-Arg24]sCT is less active than sCT, [Gly8]sCT, or [D-Arg24]sCT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号