首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Synuclein (alpha-Syn) is implicated in the pathogenesis of Parkinson's Disease, genetically through missense mutations linked to early onset disease and pathologically through its presence in Lewy bodies. alpha-Syn is phosphorylated on serine residues; however, tyrosine phosphorylation of alpha-Syn has not been established (, ). A comparison of the protein sequence between Synuclein family members revealed that all four tyrosine residues of alpha-Syn are conserved in all orthologs and beta-Syn paralogs described to date, suggesting that these residues may be of functional importance (). For this reason, experiments were performed to determine whether alpha-Syn could be phosphorylated on tyrosine residue(s) in human cells. Indeed, alpha-Syn is phosphorylated within 2 min of pervanadate treatment in alpha-Syn-transfected cells. Tyrosine phosphorylation occurs primarily on tyrosine 125 and was inhibited by PP2, a selective inhibitor of Src protein-tyrosine kinase (PTK) family members at concentrations consistent with inhibition of Src function (). Finally, we demonstrate that alpha-Syn can be phosphorylated directly both in cotransfection experiments using c-Src and Fyn expression vectors and in in vitro kinase assays with purified kinases. These data suggest that alpha-Syn can be a target for phosphorylation by the Src family of PTKs.  相似文献   

2.
The adamalysins (ADAMs) are transmembrane glycoproteins involved in cell adhesion and proteolytic ectodomain processing of cytokines and adhesion molecules. Many ADAM cytoplasmic domains are proline-rich and have potential phosphorylation sites. We show here that the cytoplasmic domain of ADAM15, metargidin, can interact specifically with Src family protein-tyrosine kinases (PTKs) and the adaptor protein Grb2 in hematopoietic cells (Jurkat, THP-1, U937, and K562 cell lines). Src homology 3 domains from several Src family PTKs including Lck, Fyn, Abl, and Src associate with ADAM15 in vitro. Dephosphorylation of cell extracts resulted in decreased association of ADAM15 with Src family PTK SH3 domains, indicating that phosphorylation influences ADAM15 interactions with its binding partners. This was confirmed in vitro for Hck, Lck, and Grb2, which showed enhanced association with tyrosine-phosphorylated glutathione S-transferase-ADAM15 cytoplasmic domain compared with unphosphorylated protein. In contrast, binding of MAD2 to ADAM15 was slightly reduced by phosphorylation of the ADAM. Immunoprecipitation of ADAM15 from Jurkat cells confirmed the association with Lck in vivo, and upon PMA stimulation, the phosphorylation level of ADAM15 was increased. Cotransfection of ADAM15 and Hck showed Hck-dependent phosphorylation of ADAM15 in vivo. Hck, and to a lesser extent Lck, phosphorylated the ADAM15 cytoplasmic domain in vitro in immune complex kinase assays. Binding of ADAM15 cytoplasmic domain to Hck and Lck was also shown by Far Western analysis. In contrast to Hck, Lck activity was not required for binding to ADAM15, as shown by treatment of cells with PP1. Deletion and point mutation analysis of the ADAM15 cytoplasmic domain confirmed the importance of the proline-rich motifs for Grb2 and Lck binding and indicated the regulatory nature of Tyr(715) and Tyr(735). These data demonstrate selective, phosphorylation-dependent interactions of ADAM15 with Src family PTKs and Grb2, which highlight the potential for integration of ADAM functions and cellular signaling.  相似文献   

3.
CD148 is a receptor-like protein-tyrosine phosphatase known to inhibit transduction of mitogenic signals in non-hematopoietic cells. Similarly, in the hematopoietic lineage, CD148 inhibited signal transduction downstream of T cell receptor. However, it also augmented immunoreceptor signaling in B cells and macrophages via dephosphorylating C-terminal tyrosine of Src family kinases (SFK). Accordingly, endogenous CD148 compensated for the loss of the main SFK activator CD45 in murine B cells and macrophages but not in T cells. Hypothetical explanations for the difference between T cells and other leukocyte lineages include the inability of CD148 to dephosphorylate a specific set of SFKs involved in T cell activation or the lack of CD148 expression during critical stages of T cell development. Here we describe striking differences in CD148 expression between human and murine thymocyte subsets, the only unifying feature being the absence of CD148 during the positive selection when the major developmental block occurs under CD45 deficiency. Moreover, we demonstrate that similar to CD45, CD148 has both activating and inhibitory effects on the SFKs involved in TCR signaling. However, in the absence of CD45, activating effects prevail, resulting in functional complementation of CD45 deficiency in human T cell lines. Importantly, this is independent of the tyrosines in the CD148 C-terminal tail, contradicting the recently proposed phosphotyrosine displacement model as a mechanism of SFK activation by CD148. Collectively, our data suggest that differential effects of CD148 in T cells and other leukocyte subsets cannot be explained by the CD148 inability to activate T cell SFKs but rather by its dual inhibitory/activatory function and specific expression pattern.  相似文献   

4.
5.
Src family protein-tyrosine kinases, which play an important role in signal integration, have been implicated in tumorigenesis in multiple lineages, including breast cancer. We demonstrate, herein, that Src kinases regulate the phosphatidylinositol 3-kinase (PI3K) signaling cascade via altering the function of the PTEN tumor suppressor. Overexpression of activated Src protein-tyrosine kinases in PTEN-deficient breast cancer cells does not alter AKT phosphorylation, an indicator of signal transduction through the PI3K pathway. However, in the presence of functional PTEN, Src reverses the activity of PTEN, resulting in an increase in AKT phosphorylation. Activated Src reduces the ability of PTEN to dephosphorylate phosphatidylinositols in micelles and promotes AKT translocation to cellular plasma membranes but does not alter PTEN activity toward water-soluble phosphatidylinositols. Thus, Src may alter the capacity of the PTEN C2 domain to bind cellular membranes rather than directly interfering with PTEN enzymatic activity. Tyrosine phosphorylation of PTEN is increased in breast cancer cells treated with pervanadate, suggesting that PTEN contains sites for tyrosine phosphorylation. Src kinase inhibitors markedly decreased pervanadate-mediated tyrosine phosphorylation of PTEN. Further, expression of activated Src results in marked tyrosine phosphorylation of PTEN. SHP-1, a SH2 domain-containing protein-tyrosine phosphatase, selectively binds and dephosphorylates PTEN in Src transfected cells. Both Src inhibitors and SHP-1 overexpression reverse Src-induced loss of PTEN function. Coexpression of PTEN with activated Src reduces the stability of PTEN. Taken together, the data indicate that activated Src inhibits PTEN function leading to alterations in signaling through the PI3K/AKT pathway.  相似文献   

6.
7.
Invasion of vascular endothelial cells by Staphylococcus aureus is associated with diverse complications and recurrent infection. Little is known about the effect of salicylic acid, the major metabolite of aspirin, on the interaction between S. aureus and vascular endothelial cells. We examined the adhesion of S. aureus strain 8325-4 cultured with or without salicylic acid to human umbilical vein endothelial cells (HUVECs), and the ability of the strain to invade these cells. Strain 8325-4 cells grown in salicylic acid were significantly less adherent to and invasive in HUVECs. Production of cytokine interleukin (IL)-6 was lower from the HUVECs infected with clinical isolates of S. aureus cultured in salicylic acid compared with those unexposed to salicylic acid. This study raises the possibility of using salicylic acid as an adjuvant therapeutic agent in the treatment of S. aureus bacteremia to prevent its complications or recurrence.  相似文献   

8.
During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing whether agrin activates Src family kinases bound to the AChR. In C2 myotubes, agrin induced tyrosine phosphorylation of these kinases, of AChR-bound MuSK, and of the AChR beta and delta subunits, as observed in phosphotyrosine immunoblotting experiments. Kinase assays revealed that the activity of AChR-associated Src kinases was increased by agrin, whereas phosphorylation of the total cellular kinase pool was unaffected. In both rapsyn-deficient myotubes and staurosporine-treated C2 myotubes, where AChRs are not clustered, agrin activated MuSK but did not cause either Src family or AChR phosphorylation. In S27 mutant myotubes, which fail to aggregate AChRs, no agrin-induced phosphorylation of AChR-bound Src kinases, MuSK, or AChRs was observed. These results demonstrate first that agrin leads to phosphorylation and activation of AChR-associated Src-related kinases, which requires rapsyn, occurs downstream of MuSK, and causes AChR phosphorylation. Second, this activation intimately correlates with AChR clustering, suggesting that these kinases may play a role in agrin-induced AChR aggregation by forming an AChR-bound signaling cascade.  相似文献   

9.
Src family kinases (SFKs) are key factors in the process of coupling signals from the cell surface to intracellular machinery and critically involved in the regulation of many neural functions mediated through growth factors, G-protein-coupled receptors or ligand-gated ion channels. The three minireviews here focus on recent findings dealing with the regulation of N-methyl-d-aspartate (NMDA) receptors by SFKs.  相似文献   

10.
We have sought to identify candidate substrates for src family protein-tyrosine kinases potentially important for transformation. Transfected NIH/3T3 cells, each overexpressing a normal or activated version of the fyn, fgr, or src translational product, were examined using antibody to phosphotyrosine as a probe. Expression of each cDNA induced similar but distinct patterns of tyrosine phosphorylated cellular proteins, with the extent of phosphorylation being greatest in cells expressing an activated kinase. A 70-kDa tyrosine-phosphorylated protein was found to associate with the activated fyn gene product. A protein designated p130, tyrosine phosphorylated in vitro, and in vivo, was found to physically associate with the activated product of each src family gene examined. Physical interaction of three different highly transforming tyrosine kinases with a common cellular protein suggests that p130 may play an important role in transformation induced by src family kinases.  相似文献   

11.
Interaction of leukemia blasts with the bone marrow extracellular matrix often results in protection of leukemia cells from chemotherapy and in persistence of the residual disease which is on the basis of subsequent relapses. The adhesion signaling pathways have been extensively studied in adherent cells as well as in mature haematopoietic cells, but the adhesion structures and signaling in haematopoietic stem and progenitor cells, either normal or malignant, are much less explored. We analyzed the interaction of leukemia cells with fibronectin (FN) using interference reflection microscopy, immunofluorescence, measurement of adherent cell fraction, real-time microimpedance measurement and live cell imaging. We found that leukemia cells form very dynamic adhesion structures similar to early stages of focal adhesions. In contrast to adherent cells, where Src family kinases (SFK) belong to important regulators of focal adhesion dynamics, we observed only minor effects of SFK inhibitor dasatinib on leukemia cell binding to FN. The relatively weak involvement of SFK in adhesion structure regulation might be associated with the lack of cytoskeletal mechanical tension in leukemia cells. On the other hand, active Lyn kinase was found to specifically localize to leukemia cell adhesion structures and a less firm cell attachment to FN was often associated with higher Lyn activity (this unexpectedly occurred also after cell treatment with the inhibitor SKI-1). Lyn thus may be important for signaling from integrin-associated complexes to other processes in leukemia cells.  相似文献   

12.
Protein phosphorylation on tyrosine has been originally characterized in animal systems and has been shown to be involved in several fundamental processes including signal transduction, growth control, and malignancy. It has been later demonstrated to occur also in a number of bacteria, and recent data suggest that it may participate in the control of bacterial pathogenicity. In this work, we provide evidence that the gram-positive human pathogen Staphylococcus aureus harbors a protein-tyrosine kinase activity. This activity is borne by a protein, termed Cap5B2, whose phosphorylating capacity is expressed only in the presence of a stimulatory protein, either Cap5A1 or Cap5A2, that enhances its affinity for the phosphoryl donor ATP. In fact, the last 27/29 amino acids of the C-terminal domain of either polypeptide are sufficient for stimulating Cap5B2 activity. The stimulation of Cap5B2 by Cap5A1 involves essentially three amino acid residues in a helix of Cap5A1 (Asp202, Glu203, and Asp205) and three residues in a helix (helix 7) of Cap5B2 (Glu190, Lys192, and Lys193), thus suggesting helix-helix interaction between these two proteins. This type of helix-helix interaction resembles the interaction required for the activation of MinD ATPase by MinE protein in the process of septum-site determination, MinD sharing sequence similarity with Cap5B2. Such activation mechanism is described here in a gram-positive bacterial tyrosine kinase, and differs from the activation mechanism previously proposed for gram-negative bacteria. Therefore, it appears that S. aureus, and possibly other gram-positive bacteria, utilizes a specific molecular mechanism for triggering protein-tyrosine kinase activity.  相似文献   

13.
The Src family of protein tyrosine kinases have been implicated in the response of cells to several ligands. These include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and colony stimulating factor type 1 (CSF-1, in macrophages and in fibroblasts engineered to express the receptor). We recently described a microinjection approach which we used to demonstrate that Src family kinases are required for PDGF-induced S phase entry of fibroblasts. We now use this approach to ask whether other ligands also require Src kinases to stimulate cells to replicate DNA. An antibody specific for the carboxy terminus of Src, Fyn, and Yes (anti-cst.1) inhibited Src kinase activity in vitro and caused morphological reversion of Src transformed cells in vivo. Microinjection of this antibody was used to demonstrate that Src kinases were required for both CSF-1 and EGF to drive cells into the S phase. Expression of a kinase-inactive form of Src family kinases also prevented EGF- and CSF-1-stimulated DNA synthesis. However, even though the Src family kinases were necessary for both PDGF- and EGF-induced DNA synthesis in Swiss 3T3 cells, the responses to two other potent growth factors for these cells, lysophosphatidic acid and bombesin, were unaffected by the neutralizing antibodies. Therefore, some but not all growth factors required functional Src family kinases to transmit mitogenic responses.  相似文献   

14.
We previously described that pervanadate, a potent tyrosine phosphatase inhibitor, induced contraction of rat myometrium via phospholipase (PL) C-gamma1 activation [Biol Reprod 54 (1996) 1383]. In this study, we found that pervanadate induced tyrosine phosphorylation of the platelet-derived growth factor (PDGF)-beta receptor, interaction of the phosphorylated PDGF receptor with the phosphorylated PLC-gamma1, production of inositol phosphates (InsPs), extracellular signal-regulated kinase (ERK) activation and DNA synthesis. All these responses were insensitive to PDGF receptor kinase inhibition or PDGF receptor down-regulation. We showed that Src family kinases were activated by pervanadate, and that InsPs production and phosphorylation of both PLC-gamma1 and the PDGF receptor were blocked by PP1, an Src inhibitor. In contrast, the stimulation of ERK by pervanadate was totally refractory to PP1. These results demonstrated that the activation of Src by pervanadate is involved in PLC-gamma1/InsPs signalling but does not play a major role in ERK activation.  相似文献   

15.
16.
In the heart, L-type voltage dependent calcium channels (L-VDCC) provide Ca2+ for the activation of contractile apparatus. The best described pathway for L-type Ca2+ current (ICa,L) modulation is the phosphorylation of calcium channels by cAMP-dependent protein kinase A (PKA), the activity of which is predominantly regulated in opposite manner by β-adrenergic (β-ARs) and muscarinic receptors. The role of other kinases is controversial and often depends on tissues and species used in the studies. In different studies the inhibitors of tyrosine kinases have been shown either to stimulate or inhibit, or even have a biphasic effect on ICa,L. Moreover, there is no clear picture about the route of activation and the site of action of cardiac Src family nonreceptor tyrosine kinases (Src-nPTKs). In the present study we used PP1, a selective inhibitor of Src-nPTKs, alone and together with different activators of ICa,L, and demonstrated that in human atrial myocytes (HAMs): (i) Src-nPTKs are activated concomitantly with activation of cAMP-signaling cascade; (ii) Src-nPTKs attenuate PKA-dependent stimulation of ICa,L by inhibiting PKA activity; (iii) Gαs are not involved in the direct activation of Src-nPTKs. In this way, Src-nPTKs may provide a protecting mechanism against myocardial overload under conditions of increased sympathetic activity.  相似文献   

17.
Regulation of Btk by Src family tyrosine kinases.   总被引:5,自引:1,他引:4       下载免费PDF全文
Loss of function of Bruton's tyrosine kinase (Btk) results in X-linked immunodeficiencies characterized by a broad spectrum of signaling defects, including those dependent on Src family kinase-linked cell surface receptors. A gain-of-function mutant, Btk*, induces the growth of fibroblasts in soft agar and relieves the interleukin-5 dependence of a pre-B-cell line. To genetically define Btk signaling pathways, we used a strategy to either activate or inactivate Src family kinases in fibroblasts that express Btk*. The transformation potential of Btk* was dramatically increased by coexpression with a partly activated c-Src mutant (E-378 --> G). This synergy was further potentiated by deletion of the Btk Src homology 3 domain. Downregulation of Src family kinases by the C-terminal Src kinase (Csk) suppressed Btk* activation and biological potency. In contrast, kinase-inactive Csk (K-222 --> R), which functioned as a dominant negative molecule, synergized with Btk* in biological transformation. Activation of Btk* correlated with increased phosphotyrosine on transphosphorylation and autophosphorylation sites. These findings suggest that the Src and Btk kinase families form specific signaling units in tissues in which both are expressed.  相似文献   

18.
Solitary amoebae of Dictyostelium discoideum are frequently exposed to stressful conditions in nature, and their multicellular development is one response to environmental stress. Here we analyzed an aggregation stage abundant gene, krsA, homologous to human krs1 (kinase responsive to stress 1) to understand the mechanisms for the initiation of development and cell fate determination. The krsA- cells exhibited reduced viability under hyperosmotic conditions. They produced smaller aggregates on membrane filters and did not form aggregation streams on a plastic surface under submerged starvation conditions, but were normal in sexual development. During early asexual development, the expression of cAMP-related genes peaked earlier in the knockout mutants. Neither cAMP oscillation in starved cells nor an increase in the cAMP level following osmotic stress was observed in krsA-. The nuclear export signal, as well as the kinase domain, in KrsA was necessary for stream formation. These results strongly suggest that krsA is involved in cAMP relay, and that signaling pathways for multicellular development have evolved in unison with the stress response.  相似文献   

19.
The Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr530 in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated. The c-Src C-terminal peptide bound two Fe3 + ions with affinities at pH 4.0 of 33 and 252 μM, and phosphorylation increased the affinities at least 10-fold to 1.4 and 23 μM, as measured by absorbance spectroscopy. The corresponding phosphorylated peptide from the SFK Lyn bound two Fe3 + ions with much higher affinities (1.2 pM and 160 nM) than the Src C-terminal peptide. Furthermore, when Lyn or Hck kinases, which had been stabilised in the inactive state by phosphorylation of the C-terminal regulatory tyrosine, were incubated with Fe3 + ions, a significant enhancement of kinase activity was observed. In contrast Lyn or Hck kinases in the unphosphorylated active state were significantly inhibited by Fe3 + ions. These results suggest that Fe3 + ions can regulate SFK activity by binding to the phosphorylated C-terminal regulatory tyrosine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号