首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined reaction norms for developmental time and weight at eclosion for 2 isozygous and 11 genetically mixed strains of Drosophila mercatorum in four culture media differing in yeast concentration. With decreasing yeast concentration, development was delayed, the weight of emerging flies decreased, and the phenotypic variance of both variables increased. Differences among stocks and significant stock × yeast interactions indicated genetic variance for both variables within environment and different phenotypic responses of stocks across environments. The phenotypic correlation between developmental time and weight was negative at low yeast concentrations and disappeared gradually with increasing yeast. The comparison of completely homozygous with genetically heterogenous stocks showed that most of the increase of variability with deteriorating environment was due to the changing expression of genetic variance. The genetic correlation between developmental time and weight turned from negative in poor to positive in rich medium, while the environmental covariance was negative in all media. Plotting the reaction norms in the developmental time-weight plane rather than separately for each trait reveals most of these results at a glance. It also suggests that much of the genetic variance might be additive, because an effect of the half-sib family structure inherent in the design is clearly visible in the plot. We interpret the pattern of changing variances and covariances, pointing out that the special growth physiology of Drosophila and the way environmental factors affect it must be taken into account. We briefly discuss the implications of changing genetic correlations among traits for the evolution of phenotypic plasticity in general.  相似文献   

2.
K. A. Hughes 《Genetics》1997,145(1):139-151
To assess the genetic basis of sperm competition under conditions in which it occurs, I estimated additive, dominance, homozygous and environmental variance components, the effects of inbreeding, and the weighted average dominance of segregating alleles for two measures of sperm precedence in a large, outbred laboratory population. Both first and second male precedence show significant decline on inbreeding. Second male precedence demonstrates significant dominance variance and homozygous genetic variance, but the additive variance is low and not significantly different from zero. For first male precedence, the variance among homozygous lines is again significant, and dominance variance is larger than the additive variance, but is not statistically significant. In contrast, male mating success and other fitness components in Drosophila generally exhibit significant additive variance and little or no dominance variance. Other recent experiments have shown significant genotypic variation for sperm precedence and have associated it with allelic variants of accessory-gland proteins. The contrast between sperm precedence and other male fitness traits in the structure of quantitative genetic variation suggests that different mechanisms may be responsible for the maintenance of variation in these traits. The pattern of genetic variation and inbreeding decline shown in this experiment suggests that one or a few genes with major effects on sperm precedence may be segregating in this population.  相似文献   

3.
油用向日葵主要农艺性状的遗传效应及相关性研究   总被引:2,自引:0,他引:2  
根据加性-显性与环境互作的遗传模型,对6个油用向日葵自交系及其配制的9个杂交组合在2个环境下的7个农艺性状表现进行遗传分析,揭示油用向日葵主要农艺性状遗传性质、规律以及主要农艺性状对含油率的贡献率。结果表明:株高、茎粗、盘径、百粒重、籽仁率和单盘粒重等6个遗传性状主要受加性和显性共同控制,结实率的遗传以加性、显性×环境互作效应为主,籽仁率、单盘粒重以加性、显性、显性×环境互作效应为主;性状间的各项遗传相关性多以加性遗传相关为主。百粒重的净效应对籽实含油率的加性遗传方差贡献率最高,结实率的净效应对籽实含油率的显性遗传方差贡献率最高,单盘粒重对籽实含油率的加性×环境互作遗传方差的贡献率最高。  相似文献   

4.
All 36 possible crosses among 6 homozygous lines of Drosophila melanogaster were tested for their phenotypic response in developmental time and dry weight at eclosion to variation in temperature and yeast concentration. This method was chosen because it allows one to produce the same heterozygous offspring repeatedly for testing under more conditions than could be handled at once. We estimated the effects of yeast concentration and temperature and their interaction on both the phenotypic and the environmental components of variation and covariation of the two traits. Development was slower at low temperatures and yeast concentrations, and dry weight and viability were lower at higher temperatures and lower yeast levels. Interactions of the two factors with the crosses and with each other indicated that there were genetic differences in plasticity and that the sensitivity of a trait to one factor depended on the level of the other. The covariation of the two traits was generally weak within an environment. Across environments, its sign depended on the factor that changed between the environments: positive for temperature, negative for yeast concentration. These findings can be explained in terms of an established growth model for Drosophila larvae. We conclude that for plastic traits with moderate or low heritability, the relationship between the phenotypic and genetic covariance matrices may be a complex function of the environmental factors that affect the traits. Some implications for the prediction of the evolution in fluctuating environments are outlined.  相似文献   

5.
Whitlock MC  Fowler K 《Genetics》1999,152(1):345-353
We performed a large-scale experiment on the effects of inbreeding and population bottlenecks on the additive genetic and environmental variance for morphological traits in Drosophila melanogaster. Fifty-two inbred lines were created from the progeny of single pairs, and 90 parent-offspring families on average were measured in each of these lines for six wing size and shape traits, as well as 1945 families from the outbred population from which the lines were derived. The amount of additive genetic variance has been observed to increase after such population bottlenecks in other studies; in contrast here the mean change in additive genetic variance was in very good agreement with classical additive theory, decreasing proportionally to the inbreeding coefficient of the lines. The residual, probably environmental, variance increased on average after inbreeding. Both components of variance were highly variable among inbred lines, with increases and decreases recorded for both. The variance among lines in the residual variance provides some evidence for a genetic basis of developmental stability. Changes in the phenotypic variance of these traits are largely due to changes in the genetic variance.  相似文献   

6.
When traits experience directional selection, such as that imposed by sexual selection, their genetic variance is expected to diminish. Nonetheless, theory and findings from sexual selection predict and demonstrate that male traits favored by female choice retain substantial amounts of additive genetic variance. We explored this dilemma through an ecological genetic approach and focused on the potential contributions of genotype x environment interaction (GEI) to maintenance of additive genetic variance for male signal characters in the lesser waxmoth, Achroia grisella (Lepidoptera: Pyralidae). We artificially selected genetic variants for two male signal characters, signal rate (SR) and peak amplitude (PA), that influence female attraction and then examined the phenotypic plasticity of these variants (high- and low-SR and high- and low-PA lines) under a range of environmental conditions expected in natural populations. Our split-family breeding experiments indicated that two signal characters, SR and PA, and several developmental characters in both high- and low-SR and high- and low-PA lines displayed considerable phenotypic plasticity among the environments tested. Moreover, strong GEIs leading to crossover between high- and low-SR lines were found for SR and developmental period. Therefore, neither high- nor low-SR genetic variants would achieve maximum attractiveness and fitness in every environment, and those variants producing unattractive signals with low SRs under normal conditions may remain in populations provided that gene flow across environments or generation overlap are sufficiently high. We speculate that the phenotypic plasticity for SR and developmental period is adaptive in A. grisella populations experiencing a range of temperature and density conditions. Females mating with attractive (high-SR) males may be assured of obtaining good genes because these males sire offspring that develop more rapidly and a crossover for developmental period may parallel that for SR. Such parallel crossovers may be expected wherever good-genes sexual selection mechanisms operate.  相似文献   

7.
Bryant EH  McCommas SA  Combs LM 《Genetics》1986,114(4):1191-1211
Effects of a population bottleneck (founder-flush cycle) upon quantitative genetic variation of morphometric traits were examined in replicated experimental lines of the housefly founded with one, four or 16 pairs of flies. Heritability and additive genetic variances for eight morphometric traits generally increased as a result of the bottleneck, but the pattern of increase among bottleneck sizes differed among traits. Principal axes of the additive genetic correlation matrix for the control line yielded two suites of traits, one associated with general body size and another set largely independent of body size. In the former set containing five of the traits, additive genetic variance was greatest in the bottleneck size of four pairs, whereas in the latter set of two traits the largest additive genetic variance occurred in the smallest bottleneck size of one pair. One trait exhibited changes in additive genetic variance intermediate between these two major responses. These results were inconsistent with models of additive effects of alleles within loci or of additive effects among loci. An observed decline in viability measures and body size in the bottleneck lines also indicated that there was nonadditivity of allelic effects for these traits. Several possible nonadditive models were explored that increased additive genetic variance as a result of a bottleneck. These included a model with complete dominance, a model with overdominance and a model incorporating multiplicative epistasis.  相似文献   

8.
9.
烤烟主要农艺性状的遗传与相关分析   总被引:8,自引:0,他引:8  
肖炳光  朱军  卢秀萍  白永富  李永平 《遗传》2006,28(3):317-323
利用包括基因型与环境互作的加性-显性遗传模型,对14个烤烟品种(系)及其配制的41个杂交组合在4个环境下的7个农艺性状表现进行遗传分析。结果表明,株高、节距、腰叶宽主要受加性效应控制,叶数、腰叶长受显性×环境互作效应影响最大,茎围以加性×环境互作效应、显性×环境互作效应为主,产量以加性效应、显性×环境互作效应为主。适应当地生态条件的品种(系)具有较高的正向加性效应。许多组合的显性主效应及在各试验点的显性×环境互作效应在方向上不尽一致,杂交组合的选配宜针对特定的生态环境进行。性状相关分析表明,大多数成对性状的各项相关系数为正值,且多以加性遗传相关为主,可利用株高对产量进行间接选择。
  相似文献   

10.
11.
The genetic basis for developmental stability, the ability of an organism to withstand genetic and environmental disturbance of development, is poorly understood. Fluctuating asymmetry (FA: small random deviations from symmetry in paired, bilateral traits) is the most widely used measure of developmental stability, and evidence suggests FA is weakly and negatively associated with genome‐wide heterozygosity. We investigated the genetic basis of developmental stability in the yellow dung fly. Fly lines were inbred for 16 generations at which time they were homozygous at the phosphoglucomutase (PGM) loci and PGM appears to influence FA in at least one other taxon. After 16 generations of inbreeding, lines homozygous for different PGM alleles were crossed and levels of FA for four metric traits were compared in the inbred and crossed flies. We also compared FA levels in these flies with previously gathered data on wild‐type (second generation outcrossed) flies, and additionally looked at the effects of two environmental stresses (larval food limitation and increased temperature) on FA. There were no significant differences in any measure of FA, nor in mean FA, in any trait when inbred and crossed flies were compared. Comparison of FA in these and wild flies also revealed no significant differences. Food limitation had no influence on FA, whereas heat stress increased FA of naturally, but not sexually, selected traits. Our results do not show a negative relationship between heterozygosity and FA, but support the notion that FA levels are stress, trait and taxon specific.  相似文献   

12.
Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat yield (both breeds) as well as for Holstein milk yield.  相似文献   

13.
As potential to adapt to environmental stress can be essential for population persistence, knowledge on the genetic architecture of local adaptation is important for conservation genetics. We investigated the relative importance of additive genetic, dominance and maternal effects contributions to acid stress tolerance in two moor frog (Rana arvalis) populations originating from low and neutral pH habitats. Experiments with crosses obtained from artificial matings revealed that embryos from the acid origin population were more tolerant to low pH than embryos from the neutral origin population in embryonic survival rates, but not in terms of developmental stability, developmental and growth rates. Strong maternal effect and small additive genetic contributions to variation were detected in all traits in both populations. In general, dominance contributions to variance in different traits were of similar magnitude to the additive genetic effects, but dominance effects outweighed the additive genetic and maternal effects contributions to early growth in both populations. Furthermore, the expression of additive genetic variance was independent of pH treatment, suggesting little additive genetic variation in acid stress tolerance. The results suggest that although local genetic adaptation to acid stress has taken place, the current variation in acid stress tolerance in acidified populations may owe largely to non-genetic effects. However, low but significant heritabilities (h 2 0.07–0.22) in all traits – including viability itself – under a wide range of pH conditions suggests that environmental stress created by low pH is unlikely to lower moor frog populations' ability to respond to selection in the traits studied. Nevertheless, acid conditions could lower populations' ability to respond to selection in the long run through reduction in effective population size.  相似文献   

14.
Knowledge of the genetic and environmental influences on a character is pivotal for understanding evolutionary changes in quantitative traits in natural populations. Dominance and aggression are ubiquitous traits that are selectively advantageous in many animal societies and have the potential to impact the evolutionary trajectory of animal populations. Here we provide age‐ and sex‐specific estimates of additive genetic and environmental components of variance for dominance rank and aggression rate in a free‐living, human‐habituated bird population subject to natural selection. We use a long‐term data set on individually marked greylag geese (Anser anser) and show that phenotypic variation in dominance‐related behaviours contains significant additive genetic variance, parental effects and permanent environment effects. The relative importance of these variance components varied between age and sex classes, whereby the most pronounced differences concerned nongenetic components. In particular, parental effects were larger in juveniles of both sexes than in adults. In paired adults, the partner's identity had a larger influence on male dominance rank and aggression rate than in females. In sex‐ and age‐specific estimates, heritabilities did not differ significantly between age and sex classes. Adult dominance rank was only weakly genetically correlated between the sexes, leading to considerably higher heritabilities in sex‐specific estimates than across sexes. We discuss these patterns in relation to selection acting on dominance rank and aggression in different life history stages and sexes and suggest that different adaptive optima could be a mechanism for maintaining genetic variation in dominance‐related traits in free‐living animal populations.  相似文献   

15.
Summary Tassel branch numbers of six crosses of maize (Zea mays L.) were analyzed to determine inheritance of this trait. Generation mean analyses were used to estimate genetic effects, and additive and nonadditive components of variance were calculated and evaluated for bias due to linkage. Both narrow-sense and broad-sense heritabilities were estimated. Additive genetic variance estimates were significant in five of the six crosses, whereas estimates of variance due to nonadditive components were significant in only three crosses. Additionally, estimates of additive variance components usually were larger than corresponding nonadditive components. There was no evidence for linkage bias in these estimates. Estimates of additive genetic effects were significant in four of six crosses, but significant dominance, additive × additive and additive × dominance effects also were detected. Additive, dominance, and epistatic gene action, therefore, all influenced the inheritance of tassel branch number, but additive gene action was most important. Both narrow-sense and broadsense heritability estimates were larger than those reported for other physiological traits of maize and corroborated conclusions concerning the importance of additive gene action inferred from analyses of genetic effects and variances. We concluded that selection for smalltasseled inbreds could be accomplished most easily through a mass-selection and/or pedigree-selection system. Production of a small-tasseled hybrid would require crossing of two small-tasseled inbreds. We proposed two genetic models to explain unexpected results obtained for two crosses. One model involved five interacting loci and the other employed two loci displaying only additive and additive × additive gene action.Journal Paper No. J-9231 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011. Project No. 2152  相似文献   

16.
Cheilostome bryozoan species show long-term morphologic stasis, implying stabilizing selection sustained for millions of years, but nevertheless retain significant heritable variation in traits of skeletal morphology. The possible role of within-genotype (within-colony) phenotypic variability in preserving genetic diversity was analyzed using breeding data for two species of Stylopoma from sites along 110 km of the Caribbean coast of Panama. Variation among zooids within colonies accounts for nearly two-thirds of the phenotypic variance on average, increases with environmental heterogeneity, and includes significant genotype-environment interaction. Thus, within-colony variability apparently represents phenotypic plasticity, at least some of which is heritable, rather than random “developmental noise.” Almost all of the among-colonies component of phenotypic variance is accounted for by additive genetic differences in trait means, suggesting that within-colony plasticity includes virtually all of the environmental component of phenotypic variance in these populations of Stylopoma. Thus, heritable within-colony plasticity could play a significant part in maintaining genetic diversity in cheilostomes, but it is also possible that rates of polygenic mutation alone are sufficient to balance the effects of selection.  相似文献   

17.
Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.  相似文献   

18.
The effects of a single population bottleneck of differing severity on heritability and additive genetic variance was investigated experimentally using a butterfly. An outbred laboratory stock was used to found replicate lines with one pair, three pairs and 10 pairs of adults, as well as control lines with approximately 75 effective pairs. Heritability and additive genetic variance of eight wing pattern characters and wing size were estimated using parent-offspring covariances in the base population and in all daughter lines. Individual morphological characters and principal components of the nine characters showed a consistent pattern of treatment effects in which average heritability and additive genetic variance was lower in one pair and three pair lines than in 10 pair and control lines. Observed losses in heritability and additive genetic variance were significantly greater than predicted by the neutral additive model when calculated with coefficients of inbreeding estimated from demographic parameters alone. However, use of molecular markers revealed substantially more inbreeding, generated by increased variance in family size and background selection. Conservative interpretation of a statistical analysis incorporating this previously undetected inbreeding led to the conclusion that the response to inbreeding of the morphological traits studied showed no significant departure from the neutral additive model. This result is consistent with the evidence for minimal directional dominance for these traits. In contrast, egg hatching rate in the same experimental lines showed strong inbreeding depression, increased phenotypic variance and rapid response to selection, highly indicative of an increase in additive genetic variance due to dominance variance conversion.  相似文献   

19.
Barley doubled haploids covering a wide range of malting quality, along with their parental cultivars and F2, F3 hybrids, were investigated in six environments (three locations, two years) to study the genotype-environment (G x E) interaction structure and the influence of environments on additive, dominance and epistatic gene effects. Grain and malt characters, such as 1000-grain weight, percentage of plump kernels, malt extract yield, protein content, Kolbach index and malt fine-coarse difference (FCD), were measured. Main effects for genetic parameters were estimated and regression analysis was used to explain the interaction of gene effects with environments. The results show that additive effects had the greatest interaction with environments for all the analysed traits, but only for malt characters this interaction was linear. Interaction of dominance effects was much lower and only in the case of 1000-grain weight, protein content and Kolbach index it proved to be significant. The results suggest that effects of heterozygous loci are more stable in contrasting environments than effects of homozygous loci.  相似文献   

20.

Background

Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits and amount to up to 50% of the total genetic variance for conformation traits and up to 43% for milk production traits. Using bovine SNP (single nucleotide polymorphism) genotypes, dominance variance can be estimated both at the marker level and at the animal level using genomic dominance effect relationship matrices. Yield deviations of high-density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic predictions with additive and dominance models. The potential use of dominance variance in planned matings was also investigated.

Results

Variance components of nine milk production and conformation traits were estimated with additive and dominance models using yield deviations of 1996 Fleckvieh cows and ranged from 3.3% to 50.5% of the total genetic variance. REML and Gibbs sampling estimates showed good concordance. Although standard errors of estimates of dominance variance were rather large, estimates of dominance variance for milk, fat and protein yields, somatic cell score and milkability were significantly different from 0. Cross-validation accuracy of predicted breeding values was higher with genomic models than with the pedigree model. Inclusion of dominance effects did not increase the accuracy of the predicted breeding and total genetic values. Additive and dominance SNP effects for milk yield and protein yield were estimated with a BLUP (best linear unbiased prediction) model and used to calculate expectations of breeding values and total genetic values for putative offspring. Selection on total genetic value instead of breeding value would result in a larger expected total genetic superiority in progeny, i.e. 14.8% for milk yield and 27.8% for protein yield and reduce the expected additive genetic gain only by 4.5% for milk yield and 2.6% for protein yield.

Conclusions

Estimated dominance variance was substantial for most of the analyzed traits. Due to small dominance effect relationships between cows, predictions of individual dominance deviations were very inaccurate and including dominance in the model did not improve prediction accuracy in the cross-validation study. Exploitation of dominance variance in assortative matings was promising and did not appear to severely compromise additive genetic gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号