首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A PCR-based survey of allelic polymorphism of three microsatellite markers, DXS998, DXS548, and FRAXAC1, mapped to chromosome region Xq27.3, and two microsatellite markers, DXS8091and DXS1691 located on Xq28 was carried out using a series of DNA samples obtained from 98 unrelated individuals from Russia. The number of alleles detected on electrophregrams for each marker tested was 4, 6, 4, 5, and 3, respectively. The values of heterozygosity index for the markers examined were 0.65, 0.27, 0.38, 0.70, and 0.29, respectively. The observed distribution of the allelic frequencies for each microsatellite marker examined fitted Hardy–Weinberg expectations. The values of individualization potential determined for each marker were 0.24, 0.53, 0.43, 0.12, and 0.52, respectively. In the sample tested the genotype distribution with regard to above loci was determined. The perspectives of using the analyzed allelic polymorphisms for indirect DNA diagnostics of the monogenic diseases located in this chromosome region (X-linked mental retardations, FRAXA and FRAXE) as well as for human population genetics and personal identification is discussed.  相似文献   

2.
Deletions of the short arm of chromosome 9 have been reported in different types of malignancies. This chromosomal region contains a number of known tumour suppressor genes, including the p16INK4A (CDKN2A), p15INK4B and MTAP tumour suppressor genes located at 9p21. In this study twenty-two paraffin embedded invasive cutaneous SCC were examined for allelic imbalance/ loss of heterozygosity (AI/LOH) of the 9p region (in particular 9p21), and for p16 protein expression. DNA was isolated from microdissected sections of normal and tumour cells and analysed for AI/LOH by using six fluorescently labelled microsatellite markers that map to the 9p region. P16 protein expression was examined by immunohistochemistry. At each of the six microsatellite markers the majority of SCC analysed showed AI/LOH. Overall both AI/LOH within the CDKN2A locus and absence of p16 protein expression were frequent among the cutaneous SCC analysed, suggesting that p16 inactivation may play a role in cutaneous SCC development. The majority of the SCC analysed also had AI/LOH of the marker within the MTAP gene, and at markers flanking the CDKN2A gene; thus further investigation as to a possible role for these genes in the development of cutaneous SCC is warranted.  相似文献   

3.
4.
MLH1是位于3p21.3上的一个DNA错配修复基因,其异常与多种肿瘤相关。为探索食管鳞癌中MLH1基因改变及其与微卫星不稳定(MSI)的关联情况,采用微卫星分析和RT—PCR方法检测了14个微卫星标志在食管癌中的状况及MLH1转录水平的表达,发现35%的食管癌出现至少一个微卫星的不稳定,66.7%的肿瘤在MLH1基因内标志D3S1611位点表现为杂合性丢失,但是MLH1没有明显的mRNA表达下调。MSI与食管癌分期、分级、淋巴结转移、患者年龄和性别等参数及MLH1基因杂合性丢失(LOH)之间无统计学意义的相关性。这些结果表明:食管癌中MLH1存在较高频率的等位基因丢失,但其mRNA表达水平并无明显异常;所测微卫星标志的不稳定是食管癌的频发事件,与MLH1基因LOH不存在必然联系。  相似文献   

5.
The DXS52 polymorphic locus mapping to the 5'-region of the blood-clotting factor VIII gene on the X chromosome was genotyped in seven Volga-Ural ethnic groups (Bashkirs, Tatars, Chuvashes, Maris, Mordovians, Udmurts, and Komis). A total of 47 different genotypes and 15 allelic variants of this locus were described. Substantial intra- and interpopulation heterogeneity of the ethnic groups studied in respect to frequency and distribution of the DXS52 alleles and genotypes was demonstrated. The unimodal DXS52 allele frequency distribution pattern with the peak at 1690 bp was typical to Mordovians and Komis. Chuvashes and Maris, as well as Udmurts, were characterized by bimodal frequency distribution patterns, with the peaks at 1690 and 670 bp, and 1690 and 1390 bp, respectively. Moreover, Bashkirs and Tatars displayed trimodal DXS52 allele frequency distribution patterns with the peaks at 1690, 1390, and 670 bp. The DXS52 allele frequency distribution patterns described in populations of the Volga-Ural region were found to be remarkably different from those established for the mixed Moscow population and the population of Western Europe. These data indicate that the DXS52 locus is highly informative, and this polymorphic system can serve as a molecular marker for population genetic studies.  相似文献   

6.
Microsatellite markers are used for loss-of-heterozygosity, allelic imbalance and clonality analyses in cancers. Usually, tumor DNA is compared to corresponding normal DNA. However, normal DNA is not always available and can display aberrant allele ratios due to copy number variations in the genome. Moreover, stutter peaks may complicate the analysis. To use microsatellite markers for diagnosis of recurrent bladder cancer, we aimed to select markers without stutter peaks and a constant ratio between alleles, thereby avoiding the need for a control DNA sample. We investigated 49 microsatellite markers with tri- and tetranucleotide repeats in regions commonly lost in bladder cancer. Based on analysis of 50 blood DNAs the 12 best performing markers were selected with few stutter peaks and a constant ratio between peaks heights. Per marker upper and lower cut off values for allele ratios were determined. LOH of the markers was observed in 59/104 tumor DNAs. We then determined the sensitivity of the marker panel for detection of recurrent bladder cancer by assaying 102 urine samples of these patients. Sensitivity was 63% when patients were stratified for LOH in their primary tumors. We demonstrate that up-front selection of microsatellite markers obliterates the need for a corresponding blood sample. For diagnosis of bladder cancer recurrences in urine this significantly reduces costs. Moreover, this approach facilitates retrospective analysis of archival tumor samples for allelic imbalance.  相似文献   

7.
The CA repeat microsatellite DXS456, with a heterozygosity of 77%, has been localized by multipoint linkage analysis in relation to 20 other genetic markers. DXS456 mapped to a 4.2-cM interval defined by the flanking markers DXS178 and DXS287. The maximum likelihood order of markers, cen-(DXYS1X/DXYS13X/DXYS2X/DXYS12X)-DXS366 -DXS178-DXS456-DXS287-DXS358-DXS267- qter, is favored by odds greater than 1000:1 over the subset of most likely alternative orders. Linkage of DXS456 can be inferred for at least six disease genes that are known to be linked to markers in the region Xq21.31-Xq25 and the marker will serve as an important index point for orienting these and other disease and marker loci in the region.  相似文献   

8.
To map human chromosome 2 region associated with type 1 diabetes mellitus, 89 families with concordant and discordant sib pairs were analyzed. Linkage and association with type 1 diabetes were examined using polymorphic microsatellite markers spanning the region of about 4 Mb. The linkage plot was constructed, and association of the five microsatellite markers within the chromosomal region 2q35 was examined. Polymorphic marker D2S137 (Z' = 3.225, p(c) = 0.0048) demonstrated maximum linkage and association with type 1 diabetes.  相似文献   

9.
We have used a panel of eight human/mouse somatic-cell hybrids, each containing various portions of human chromosome 7, and three patient cell lines with interstitial deletions on chromosome 7 for localization of six DNA markers linked to the cystic fibrosis locus. Our data suggest that D7S15 is located in the region 7 cen----q22, that MET is located in 7q22----31, and that D7S8 and 7C22 are located in q22----q32. The hybridization results for COL1A2 and TCRB are consistent with their previous assignment to 7q21----q22 and 7q32, respectively. Given the location of these six markers and their linkage relationships, it is probable that the cystic fibrosis locus is in either the distal region of band q22 or the proximal region of q31. Using the same set of cell lines, we have also examined the location of another chromosome 7 marker PGY1. The data show that PGY1 is located in the region 7cen----q22, a position very different from its previous assignment.  相似文献   

10.
A new polymorphic DNA marker U6.2, defining the locus DXS304, was recently isolated and mapped to the Xq27 region of the X chromosome. In the previous communication we describe a linkage study encompassing 16 fragile-X families and using U6.2 and five previously described polymorphic markers at Xq26-q28. One recombination event was observed between DXS304 and the fragile-X locus in 36 informative meioses. Combined with information from other reports, our results suggest the following order of the examined loci on Xq: cen-F9-DXS105-DXS98-FRAXA-DXS304-(DXS52-F8 -DXS15). The locus DXS304 is closely linked to FRAXA, giving a peak lod score of 5.86 at a corresponding recombination fraction of .00. On the basis of the present results, it is apparent that U6.2 is a useful probe for carrier and prenatal diagnosis in fragile-X families.  相似文献   

11.
Huang XP  Zhao CX  Li QJ  Cai Y  Liu FX  Hu H  Xu X  Han YL  Wu M  Zhan QM  Wang MR 《Gene》2006,366(1):161-168
  相似文献   

12.
70个水稻微卫星标记染色体位置的更正   总被引:1,自引:0,他引:1  
微卫星标记(SSR)因其操作简单和稳定可靠的特点而成为一种重要的分子标记,被广泛应用于遗传作图和种质鉴定等方面。但其在染色体上位置的正确性将直接影响到基因定位的正确性和后续研究的方向。利用美国国家生物信息技术中心(NCBI)网站的Blast程序,将2740个SSR标记的前后引物序列与水稻粳稻品种日本晴基因组进行比对,共发现70个标记位于另一条染色体,对这70个标记重新锚定的染色体进行了更正。这将有助于今后水稻分子标记遗传连锁图的正确构建。  相似文献   

13.
The gene Pi15 for resistance of rice to Magnaporthe grisea was previously identified as being linked to the gene Pii. However, there is a debate on the chromosomal position of the Pii gene, because it was originally mapped on chromosome 6, but recent work showed it might be located on chromosome 9. To determine the chromosomal location of the Pi15 gene, a linkage analysis using molecular markers was performed in a F2 mapping population consisting of 15 resistant and 141 susceptible plants through bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). Out of 20 microsatellite markers mapped on chromosomes 6 and 9 tested, only one marker, RM316 on chromosome 9, was found to have a linkage with the Pi15 gene with a recombination frequency of (19.1 ± 3.7)%. To confirm this finding, four sequence-tagged site (STS) markers mapped on chromosome 9 were tested. The results suggested that marker G103 was linked to the Pi15 gene with a recombination frequency of (5.7 ± 2.1)%. To find marker(s) more closely linked to the Pi15 gene, random amplified polymorphic DNA (RAPD) analysis was performed. Out of 1 000 primers tested, three RAPD markers, BAPi15486, BAPi15782 and BAPi15844 were found to tightly flank the Pi15 gene with recombination frequencies of 0.35%, 0.35% and 1.1%, respectively. These three RAPD markers should be viewed as the starting points for marker-aided gene pyramiding and cloning. A new gene cluster of rice blast resistance on chromosome 9 was also discussed.  相似文献   

14.
The gene-rich region of Xp11.4-Xp11.3 was characterized by increasing the physical marker density. Sequence tags (STSs) were generated by IRS- and DOP-PCR techniques, subsequent cloning, sequencing, and creation of primer pairs for single-copy sites. A total of 224 novel STSs were collected, providing an average marker density of 18 kb in the Xp11.4-Xp11.3 region which is assumed to be approximately 4 Mb in size. Sequence analysis of generated and established STSs via data base searches identified a novel gene highly homologous with the protein phosphatase 1 inhibitor 2 (IPP-2) and two pseudogenes; all of which map to the approximately 1.5 Mb proximal region of the critical region for X-linked congenital stationary night blindness type I (CSNB1) between markers DXS993 and DXS228. Using well-defined DNA panels, 69 STSs were fine-mapped to this approximately 1.5 Mb region, providing a marker coverage of one marker per 22 kb. No allelic loss was observed when the total STS content was applied to patient DNAs by PCR-mediated amplification. However, given the association of this region with a number of inherited ocular diseases, the data presented here provide valuable tools for genetic linkage and large-scale association studies.  相似文献   

15.
Summary Lymphocyte karyotyping of an infant girl with the clinical features of microphthalmia, iridoschisis, goiter, hip joint dysplasia, labium synechia and craniotabes revealed an Xp deletion. The lymphocyte karyotypes of the parents were normal. Bromodeoxyuridine incorporation studies showed that, in 42 out of 43 metaphases, the deleted X chromosome was late replicating. In one metaphase, the normal X chromosome was observed to be allocyclic. Using DNA markers from the Xp22 region, the breakpoint was assigned distal to DXS16 (pXUT23) and proximal to DXS143 (dic56). Dosage intensity measurements confirmed that the STS gene and the DNA marker DXS31 were involved in the deleted area. Restriction fragment length polymorphism analysis revealed that the paternally derived X-chromosome was deleted.  相似文献   

16.
Various polymorphic markers with a random distribution along the X chromosome were used in a linkage analysis performed on a family with apparently Xlinked recessive inheritance of neural tube defects (NTD). The lod score values were used to generate an exclusion map of the X chromosome; this showed that the responsible gene was probably not located in the middle part of Xp or in the distal region of Xq. A further refining of these results was achieved by haplotype analysis, which indicated that the gene for X-linked NTD was located either within Xp21.1-pter, distal from the DMD locus, or in the region Xq12–q24 between DXS106 and DXS424. Multipoint linkage analysis revealed that the likelihood for gene location is highest for the region on Xp. The region Xq26–q28, which has syntenic homology with the segment of the murine X chromosome carrying the locus for bent tail (Bn), a mouse model for X-linked NTD, is excluded as the location for the gene underlying X-linked NTD in the present family. Thus, the human homologue of the Bn gene and the present defective gene are not identical, suggesting that more than one gene on the X chromosome plays a role in the development of the neural tube.  相似文献   

17.
We present the first set of microsatellite markers developed exclusively for an extinct taxon. Microsatellite data have been analysed in thousands of genetic studies on extant species but the technology can be problematic when applied to low copy number (LCN) DNA. It is therefore rarely used on substrates more than a few decades old. Now, with the primers and protocols presented here, microsatellite markers are available to study the extinct New Zealand moa (Aves: Dinornithiformes) and, as with single nucleotide polymorphism (SNP) technology, the markers represent a means by which the field of ancient DNA can (preservation allowing) move on from its reliance on mitochondrial DNA. Candidate markers were identified using high throughput sequencing technology (GS-FLX) on DNA extracted from fossil moa bone and eggshell. From the 'shotgun' reads, >60 primer pairs were designed and tested on DNA from bones of the South Island giant moa (Dinornis robustus). Six polymorphic loci were characterised and used to assess measures of genetic diversity. Because of low template numbers, typical of ancient DNA, allelic dropout was observed in 36-70% of the PCR reactions at each microsatellite marker. However, a comprehensive survey of allelic dropout, combined with supporting quantitative PCR data, allowed us to establish a set of criteria that maximised data fidelity. Finally, we demonstrated the viability of the primers and the protocols, by compiling a full Dinornis microsatellite dataset representing fossils of c. 600-5000 years of age. A multi-locus genotype was obtained from 74 individuals (84% success rate), and the data showed no signs of being compromised by allelic dropout. The methodology presented here provides a framework by which to generate and evaluate microsatellite data from samples of much greater antiquity than attempted before, and opens new opportunities for ancient DNA research.  相似文献   

18.
Nance-Horan syndrome (NHS) is an X-linked disease characterized by severe congenital cataract with microcornea, distinctive dental findings, evocative facial features and mental impairment in some cases. Previous linkage studies have placed the NHS gene in a large region from DXS143 (Xp22.31) to DXS451 (Xp22.13). To refine this localization further, we have performed linkage analysis in four families. As the maximum expected Lod score is reached in each family for several markers in the Xp22.31–p22.13 region and linkage to the rest of the X chromosome can be excluded, our study shows that NHS is a genetically homogeneous condition. An overall maximum two-point Lod score of 9.36 (θ = 0.00) is obtained with two closely linked markers taken together, DXS207 and DXS1053 in Xp22.2. Recombinant haplotypes indicate that the NHS gene lies between DXS85 and DXS1226. Multipoint analysis yields a maximum Lod score of 9.45 with the support interval spanning a 15-cM region that includes DXS16 and DXS1229/365. The deletion map of the Xp22.3–Xp21.3 region suggests that the phenotypic variability of NHS is not related to gross rearrangement of sequences of varying size but rather to allelic mutations in a single gene, presumably located proximal to DXS16 and distal to DXS1226. Comparison with the map position of the mouse Xcat mutation supports the location of the NHS gene between the GRPR and PDHA1 genes in Xp22.2. Received: 14 June 1996 / Revised: 10 October 1996  相似文献   

19.
A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538 and 5'-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified.  相似文献   

20.
In this study, the Suffolk and Texel sheep breeds were compared for microsatellite marker heterozygosity throughout seven chromosomal regions in the sheep genome. A total of 623 Texel animals and 489 Suffolk animals in five and three half-sib families, respectively, were genotyped for microsatellite markers across the seven different chromosomes. Using the observed allele frequencies, the expected levels of heterozygosity were calculated for each family. The expected levels of heterozygosity did not significantly differ between the breeds across all regions studied. However, levels of expected heterozygosity were 32% higher in Texel animals on chromosome 4 due to a region of increased heterozygosity between BMS648 and BM3212. The number of allelic variants significantly differed between the breeds, solely due to a region of increased number of alleles on chromosome 20. This region of higher numbers of allele variants in the Texel breed extended from the MHC to c. 15 cM distal to the MHC region incorporating markers OMHC1, CSRD226, TGLA387 and BM1818, which had 3.30, 7.02, 3.09 and 6.75 more alleles in Texel than in Suffolk animals, respectively. No difference was observed in the variance of allele frequency between the two breeds. It is proposed that previous selective sweeps may have reduced numbers of alleles and levels of heterozygosity in the Suffolk breed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号