首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well-characterized species introductions provide opportunities to compare the genetic signatures of known founder effects across classes of molecular markers. The release of small numbers of house finches (Carpodacus mexicanus) into the eastern United States in the 1940s led to substantial interest in the effects of this introduction on genetic diversity in this now abundant species, an issue that has been highlighted by a recent Mycoplasma disease epidemic that most intensively affects the introduced and potentially genetically depauperate house finch populations. Previous studies comparing genetic diversity levels in native and introduced house finch populations produced seemingly disparate results: comparisons based on amplified fragment length polymorphism, RFLP mtDNA, and allozyme markers found essentially equivalent levels of diversity in eastern and western populations, whereas microsatellite markers showed clear reductions in diversity in the introduced populations. Here we employ sequence variation at the ND2 mtDNA locus to further compare levels of diversity between the four native and five introduced house finch populations that were previously examined in the microsatellite study. We found substantially lower ND2 haplotype richness and diversity across all introduced populations of house finches. The majority of sequence variation (78%) was detected within subpopulations, with the remainder (22%) explained by the historical status of each population (native or introduced). Our results are consistent with previous microsatellite evidence for a founder effect during the introduction of eastern house finches, and suggest that the mtDNA founder effect was particularly severe, likely owing to a male-biased sex ratio at the time of introduction coupled with the lower effective population size of clonally inherited markers. We discuss how the inconsistencies between past studies of house finch diversity can inform the usefulness of distinct marker sets for detecting molecular signatures of founder events.  相似文献   

2.
The success of non-native species may depend on the genetic resources maintained through the invasion process. The Coqui ( Eleutherodactylus coqui ), a frog endemic to Puerto Rico, was introduced to Hawaii in the late 1980s via the horticulture trade, and has become an aggressive invader. To explore whether genetic diversity and population structure changed with the introduction, we assessed individuals from 15 populations across the Hawaiian Islands and 13 populations across Puerto Rico using six to nine polymorphic microsatellite loci and five dorsolateral colour patterns. Allelic richness ( R T) and gene diversity were significantly higher in Puerto Rico than in Hawaii populations. Hawaii also had fewer colour patterns (two versus three to five per population) than Puerto Rico. We found no isolation by distance in the introduced range, even though it exists in the native range. Results suggest extensive mixing among frog populations across Hawaii, and that their spread has been facilitated by humans. Like previous research, our results suggest that Hawaiian Coquis were founded by individuals from sites around San Juan, but unlike previous research the colour pattern and molecular genetic data (nuclear and mtDNA) support two separate introductions, one on the island of Hawaii and one on Maui. Coquis are successful invaders in Hawaii despite the loss of genetic variation. Future introductions may increase genetic variation and potentially its range.  相似文献   

3.
Biological invasions are recognized as a major threat to both natural and managed ecosystems. Phylogeographic and population genetic analyses can provide information about the geographical origins and patterns of introduction and explain the causes and mechanisms by which introduced species have become successful invaders. Reticulitermes flavipes is a North American subterranean termite that has been introduced into several areas, including France where introduced populations have become invasive. To identify likely source populations in the USA and to compare the genetic diversity of both native and introduced populations, an extensive molecular genetic study was undertaken using the COII region of mtDNA and 15 microsatellite loci. Our results showed that native northern US populations appeared well differentiated from those of the southern part of the US range. Phylogenetic analysis of both mitochondrial and nuclear markers showed that French populations probably originated from southeastern US populations, and more specifically from Louisiana. All of the mtDNA haplotypes shared between the United States and France were found in Louisiana. Compared to native populations in Louisiana, French populations show lower genetic diversity at both mtDNA and microsatellite markers. These findings are discussed along with the invasion routes of R. flavipes as well as the possible mechanisms by which French populations have evolved after their introduction.  相似文献   

4.
Tuatara (Sphenodon spp) populations are restricted to 35 offshore islands in the Hauraki Gulf, Bay of Plenty and Cook Strait of New Zealand. Low levels of genetic variation have previously been revealed by allozyme and mtDNA analyses. In this new study, we show that six polymorphic microsatellite loci display high levels of genetic variation in 14 populations across the geographic range of tuatara. These populations are characterised by disjunct allele frequency spectra with high numbers of private alleles. High F ST (0.26) values indicate marked population structure and assignment tests allocate 96% of all individuals to their source populations. These genetic data confirm that islands support genetically distinct populations. Principal component analysis and allelic sequence data supplied information about genetic relationships between populations. Low numbers of rare alleles and low allelic richness identified populations with reduced genetic diversity. Little Barrier Island has very low numbers of old tuatara which have retained some relictual diversity. North Brother Island’s tuatara population is inbred with fixed alleles at 5 of the 6 loci.  相似文献   

5.
Genetic relationships, population subdivision and genetic diversity were estimated from mtDNA and allozyme data for two subspecies of tiger salamander, one of which is obligately metamorphic and the other polymorphic for paedomorphosis (larval reproduction). Far greater genetic differentiation exists between subspecies than within subspecies, suggesting that the subspecies have evolved in allopatry. Values of Fst calculated from both mtDNA and allozymes were greater than 0.400 for each subspecies. Significant population subdivision was detected even on a microgeographic scale. This extensive population subdivision indicates that populations can respond to extremely localized selection pressures. In the case of paedomorphosis, populations in permanent water should evolve paedomorphosis as long as the appropriate genes exist. For both mtDNA and allozymes, comparisons of population structure within the polymorphic subspecies and between polymorphic and metamorphic subspecies reveal no discernible effects of paedomorphosis. However, a comparison of paedomorphic and metamorphic populations of the polymorphic subspecies showed significantly higher mtDNA diversity in paedomorphic populations. The discrepancy between the allozyme and mtDNA results may be due to the lower effective population size of mtDNA compared to autosomal genes.  相似文献   

6.
Mielichhoferia elongata, one of the so-called “copper mosses,” has a broad but highly disjunctive geographic distribution and is rare throughout its range. A genetic analysis of 30 populations based on a survey of 21 allozyme loci reveals the following. 1) Total gene diversity at the specific level is high (0.41). 2) Within-population diversity is low, and over 90% of all genetic variation is among rather than within populations (mean GST = 0.93). 3) There is little differentiation in allele frequencies between North American and European populations. 4) Populations consist of one to six multilocus genotypes; 13 of the populations appear to consist of a single clone. 5) Colorado populations contain a tremendous reservoir of genetic variation (88% of all alleles found in the species in North America and Europe occur in one or more Colorado populations). 6) Populations in the eastern and western United States, and in Europe, contain subsets of the allelic diversity found in Colorado. The genetic structure of M. elongata suggests repeated dispersal and founding of populations.  相似文献   

7.
A combination of allozyme and mitochondrial DNA markers were used to determine the contribution of recent and ancient causes of patterns of genetic variation within and among 46 populations of the endangered golden sun moth, Synemon plana. Allozyme analysis grouped the 46 populations into 5 major genetic clusters that corresponded closely with geographic location following a classic isolation-by-distance model. Phylogenetic analysis of 14 mtDNA haplotypes revealed two reciprocally monophyletic groups. One of these groups (containing 4 geographically distant populations) was clearly identified by allozyme analysis and represents a distinct evolutionary unit. The remaining 4 allozyme groups were not distinguishable by mtDNA analysis. The evidence suggests that the populations within these groups derived from a small founding population that underwent rapid demographic expansion in ancient times. This was followed by more recent population bottlenecks resulting from habitat fragmentation associated with the widespread introduction of agriculture into the region. The generally low levels of allozyme and nucleotide diversity within these populations support this hypothesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The genetic analysis is made on the population of the European smelt Osmerus eperlanus occasionally introduced to Lake Syamozero (Karelia) and of the vendace Coregous albula supposedly acclimatized in Solovetskie Islands as a result of fish cultural activities of the Solovetskii Monastery. They are compared with several natural populations—possible donors for both introductions. Genetic variation in a sample of smelt was estimated by means of restrictase analysis of mtDNA (fragment ND1/ND2) in samples of vendace—by means of allozyme analysis of six isoenzyme systems. The probable population for the Syamozero smelt is the population of Onega Lake in spite of the previously noted greater morphological similarity of colonizers with the smelt of Ladoga Lake. A high level of genetic variation in the Syamozero smelt in comparison with native populations indicates that, beside the introduction from Onega Lake, there were repeated introductions from neighboring water bodies. The genetic analysis of the Solovetskaya vendace does not prove that the vendace appeared on islands due to acclimatization. Frequencies of alleles of allozyme loci in the Solovetskaya population significantly differ from frequencies in continental populations. Still, it is compared with some populations of the Arkhangelsk oblast. Estimations of genetic diversity of the Solovetskaya vendace turned out to be comparable with those in native populations.  相似文献   

9.
Allozymes and mitochondrial DNA sequences were used to examine the phylogeographical history of the rough-skinned newt, Taricha granulosa, in western North America. Nineteen populations were analysed for allozyme variation at 45 loci, and 23 populations were analysed for cytochrome b sequence variation. Both data sets agree that populations in the southern part of the range are characterized by isolation by distance, whereas northern populations fit the expectations of a recent range expansion. However, the northern limit of isolation by distance (and the southern limit of range expansion) is located in Oregon State by the mtDNA data, and in Washington State by the allozyme data. Nevertheless, both data sets are consistent with the known Pleistocene history of western North America, with phylogenetically basal populations in central and northern California, and a recent range expansion in the north following the retreat of the Cordilleran ice sheet 10,000 years ago. Additionally, a population in Idaho, previously considered introduced from central California based on morphometric analyses, possesses a distinct mtDNA haplotype, suggesting it could be native. The relevance of these results for Pacific Northwest biogeography is discussed.  相似文献   

10.
The phylogeography of montane species often reveals strong genetic differentiation among mountain ranges. Both classic morphological and genetic studies have indicated distinctiveness of Pyrenean populations of the butterfly Erebia euryale. This hypothesis remained inconclusive until data from the westernmost populations of the distribution area (Cantabrian Mountains) were analysed. In the present study, we set out to describe the population structure of Erebia euryale in western Cantabria, where the species occurs in scattered localities. For this goal, we estimate the genetic diversity and differentiation found in 218 individuals from six Cantabrian (North Spain) localities genotyped by 17 allozyme loci. We also sequence 816 bp of the cytochrome oxidase subunit I mitochondrial gene in 49 individuals from Cantabrian localities and 41 specimens from five other European sites. Mitochondrial data support the recognition of four major genetic groups previously suggested for the European populations based on allozyme polymorphisms. Both mitochondrial and nuclear markers reveal genetic distinctiveness of a single Pyrenean–Cantabrian lineage of E. euryale. The lack of geographical structure and the star‐like topology displayed by the mitochondrial haplotypes indicate a pattern of demographic expansion in northern Iberia, probably related to Upper Pleistocene climatic oscillations. By contrast, within the Pyrenean–Cantabrian lineage, Cantabrian samples are genetically structured in nuclear datasets. In particular, San Isidro is significantly differentiated from the other five populations, which cluster into two groups. We recognize an evolutionary significant unit for Pyrenean–Cantabrian populations of Erebia euryale. Our results also illustrate that the evolutionary history of a species may be shaped by processes undetectable by using mtDNA alone.  相似文献   

11.
In the present work, DNA was extracted from 63 skeletal samples recovered at the Neolithic site of San Juan ante Portam Latinam (SJAPL) (Araba, Basque Country). These samples have proved useful as genetic material for the performance of population studies. To achieve this it was necessary to overcome the methodological problems arising when working with damaged DNA molecules. We succeeded in performing an amplification and restriction analysis of the polymorphisms present in the mtDNA. Ninety seven percent of the samples were classified as belonging to one of the nine mtDNA haplogroups described in Caucasians. This work shows that restriction analysis is a useful methodological tool to perform reliable population genetic analysis on archaeological remains. Tha analysis of ancient and modern haplogroup distribution can shed more light on the genetic evolution of human populations. Moreover, a more exhaustive data on prehistoric populations will allow to build stronger hypothesis on the genetic relationships among human populations.  相似文献   

12.
Distinguishing natural versus anthropogenic dispersal of organisms is essential for determining the native range of a species and implementing an effective conservation strategy. For cryptogenic species with limited historical records, molecular data can help to identify introductions. Nematostella vectensis is a small, burrowing estuarine sea anemone found in tidally restricted salt marsh pools. This species’ current distribution extends over three coast lines: (i) the Atlantic coast of North America from Nova Scotia to Georgia, (ii) the Pacific coast of North America from Washington to central California, and (iii) the southeast coast of England. The 1996 IUCN Red List designates N. vectensis as “vulnerable” in England. Amplified fragment length polymorphism (AFLP) fingerprinting of 516 individuals from 24 N. vectensis populations throughout its range and mtDNA sequencing of a subsample of these individuals strongly suggest that anthropogenic dispersal has played a significant role in its current distribution. Certain western Atlantic populations of N. vectensis exhibit greater genetic similarity to Pacific populations or English populations than to other western Atlantic populations. At the same time, F-statistics showing high degrees of genetic differentiation between geographically proximate populations support a low likelihood for natural dispersal between salt marshes. Furthermore, the western Atlantic harbors greater genetic diversity than either England or the eastern Pacific. Collectively, these data clearly imply that N. vectensis is native to the Atlantic coast of North America and that populations along the Pacific coast and in England are cases of successful introduction.  相似文献   

13.
In the present work, DNA was extrated from 63 skeletal samples recovered at the Neolithic site of San Juan ante Portam Latinam (SJAPL) (Araba, Basque Country). These samples have proved useful as genetic material for the performance of population studies. To achieve this it was necessary to overcome the methodological problems arising when working with damaged DNA molecules. We succeeded in performing an amplification and restriction analysis of the polymorphisms present in the mtDNA. Ninety seven percent of the samples were classified as belonging to one of the nine mtDNA haplogroups described in Caucasians. This work shows that restriction analysis is a useful methodological tool to perform reliable population genetic analysis on archaeological remains. Tha analysis of ancient and modern haplogroup distribution can shed more light on the genetic evolution of human populations. Moreover, a more exhaustive data on prehistoric populations will allow to build stronger hypothesis on the genetic relationships among human populations.  相似文献   

14.
The selection of an appropriate source population may be crucial to the long-term success of reintroduction programs. Appropriate source populations often are those that originate from the same genetic lineage as native populations. However, source populations also should exhibit high levels of genetic diversity to maximize their capacity to adapt to variable environmental conditions. Finally, it is preferable if source populations are genetically representative of historical lineages with little or no contamination from non-native or domesticated stocks. Here, we use nuclear (microsatellite) and cytoplasmic (mitochondrial control region) markers to assess the genetic suitability of a potential source population inhabiting the White River in Indiana: the last extant lake sturgeon population in the Ohio River drainage. The White River population exhibited slightly lower levels of genetic diversity than other lake sturgeon populations. However, the population’s two private microsatellite alleles and three private haplotypes suggest a unique evolutionary trajectory. Population assignment tests revealed only two putative migrants in the White River, indicating the population has almost completely maintained its genetic integrity. Additionally, pairwise F ST estimates indicated significant levels of genetic divergence between the White River and seven additional lake sturgeon populations, suggesting its genetic distinctiveness. These data indicate that the White River population may be the most suitable source population for future lake sturgeon reintroductions throughout the Ohio River drainage. Furthermore, the White River population appears to be a reservoir of unique genetic information and reintroduction may be a necessary strategy to ensure the persistence of this important genetic lineage.  相似文献   

15.
Paradoxically, an allozyme study of Metepeira “spinipes” (sensu lato) demonstrated extensive gene flow among four populations whose members are nevertheless morphologically and behaviorally distinct. Initially, the authors tentatively concluded that the populations exhibited panmixis and suggested that local environmental effects accounted for the apparent morphological and behavioral differences. However, they later concluded that such differences were too great to be accounted for by the environment alone and that the four populations actually represented three different species. To confirm that the allozyme results were, in fact, artifactual, we reexamined the relationships among these populations by sequencing a portion of the 12S mtDNA ribosomal subunit. In contrast to the allozyme result, our results demonstrate good agreement between patterns of genetic and morphological/behavioral variation. We suggest (1) that the allozyme allele frequencies are homogenized by balancing selection, not gene flow as was previously concluded, and therefore (2) that this study provides another instance in which inferences about population structures from allozyme data are misleading.  相似文献   

16.
Several European species of the terrestrial slug genus Arion have been introduced into North America. A case in point is the species complex A. subfuscus s.l. which has become one of the most abundant slug taxa in North America. In Europe this complex consists of at least two cryptic species, viz. A. fuscus and A. subfuscus s.s., the latter of which is further subdivided in five strongly divergent mtDNA lineages (A. subfuscus S1–S5). In order to determine which of these A. subfsucus s.l. taxa are present in the NE USA and in order to assess their population genetic structure, we compared mtDNA, nDNA and allozyme variation between populations from the NE USA and Europe. Our results show that (1) at least A. subfuscus S1 has become successfully established in the NE USA, (2) founder effects are the most likely explanation for the loss of a large amount of molecular genetic variation in populations from the NE USA (i.e. a loss of 96% of the 16S rDNA haplotypes, 67% of the ITS1 alleles and 46% of the alleles at polymorphic allozyme loci), and (3) part of the remaining genetic variation in NE USA populations was probably due to multiple introductions from the British Isles and the European mainland, and the hybrid structure of most of these source populations. Apparently, the extreme loss of molecular genetic variation in this introduced species has not prevented it from successfully establishing and spreading in novel environments.  相似文献   

17.
Invasiveness might depend on the ability of genetically diverse populations of exotic species to adapt to novel environments, which suggests a paradox since exotic species are expected to lose genetic diversity when introduced. The apparent need for genetic diversity is particularly important for exotic species that lack bi-parental reproduction and genetic recombination. We used genetic marker studies to determine the genotypic diversity of invasive US populations of the clonal New Zealand mudsnail (Potamopyrgus antipodarum). We report here on a three-pronged survey of allozyme, microsatellite DNA, and mitochondrial DNA genetic markers of invasive populations with a focus on the western US. Combining the three types of genetic markers, we discovered four distinct genotypes of P. antipodarum. These results show that only one genotype (US 1) occupied the vast majority of the western US range, and a second occurred in the Great Lakes in the eastern US (US 2). Two other genotypes occurred in the western US (US 1a and US 3), but were restricted to populations near the presumed source of invasion in the middle Snake River, ID. These results suggest that P. antipodarum spread across a broad geographic range in the western US from a single introduced source population, and that the populations are comprised of a single clonal lineage.  相似文献   

18.
Aim Primary and secondary genetic clines in post-glacial colonized regions have different implications for biogeographic distributions and the origin of species. Primary clines arise in situ after colonization as adaptive responses to environmental gradients, while secondary clines are caused by contact between vicariant lineages. Here we analyse primary versus secondary origin of a genetic cline in the tephritid fly Urophora cardui in Jutland, Denmark, in a post-glacial landscape. Location Western Palaearctic. Methods Phylogeographic and demographic analyses of U. cardui based on mitochondrial DNA (mtDNA) genealogies, hierarchical genetic variance tests based on allozymes and distribution analysis of a rare allele from the Jutland cline. Results There was no phylogeographic divergence between the Jutland population of U. cardui north of the cline and neighbouring western European regional populations, which all shared the common western European mtDNA haplotype H1. At nuclear loci, by contrast, the North Jutland population was diverged above the mean level of divergence among regional populations and had no loss of genetic variation. A rare allozyme allele that was frequent in the cline area (up to 45%) and was missing north of the cline also occurred at low frequency (0–14%) elsewhere in the sampling range. Shallow phylogeographic divergence was observed between Russian and western European populations and between English and continental populations. Main conclusions The genetic variation patterns support primary cline evolution and parapatric divergence in Jutland following a demographic expansion of a western European ancestral source population of U. cardui, and suggest cryptic refugia and/or selection in other European population assemblages. The patterns of intra-specific regional divergence are discussed with respect to the interpretation of cryptic refugia in Europe after the most recent ice age.  相似文献   

19.
The brown anole, Anolis sagrei, is one of the most widespread and successful colonisers of the diverse Anolis genus, which comprises c. 400 species occurring naturally in Central and South America and the Caribbean. Based on extensive between and within population sampling from a previously published study (334 mitochondrial DNA sequences) and sampling for this study (37 mtDNA sequences), we reconstruct a phylogeny and produce a haplotype network to assign a recently introduced population in St Vincent, Lesser Antilles to its geographic origin. A single haplotype was present in the St Vincent population, which was identical to a haplotype from Tampa, FL. We show that genetic diversity within native range populations, combined with low frequencies of introduced haplotypes in native ranges, may impair attempts to identify source populations, even despite intensive sampling effort. The absence of mtDNA haplotype diversity suggests a significant genetic founder effect within the St Vincent population.  相似文献   

20.

Biological invasions can pose a severe threat to coastal ecosystems, but are difficult to track due to inaccurate species identifications and cryptic diversity. Here, we clarified the cryptic diversity and introduction history of the marine amphipod Ampithoe valida by sequencing a mtDNA locus from 683 individuals and genotyping 10,295 single-nucleotide polymorphisms (SNPs) for 349 individuals from Japan, North America and Argentina. The species complex consists of three cryptic lineages: two native Pacific and one native Atlantic mitochondrial lineage. It is likely that the complex originated in the North Pacific and dispersed to the north Atlantic via a trans-arctic exchange approximately 3 MYA. Non-native A. valida in Argentina have both Atlantic mitochondrial and nuclear genotypes, strongly indicating an introduction from eastern North America. In two eastern Pacific estuaries, San Francisco Bay and Humboldt Bay, California, genetic data indicate human-mediated hybridization of Atlantic and Pacific sources, and possible adaptive introgression of mitochondrial loci, nuclear loci, or both. The San Francisco Bay hybrid population periodically undergoes population outbreaks and profoundly damages eelgrass Zostera marina thalli via direct consumption, and these ecological impacts have not been documented elsewhere. We speculate that novel combinations of Atlantic and Pacific lineages could play a role in A. valida’s unique ecology in San Francisco Bay. Our results reinforce the notion that we can over-estimate the number of non-native invasions when there is cryptic native structure. Moreover, inference of demographic and evolutionary history from mitochondrial loci may be misleading without simultaneous survey of the nuclear genome.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号