共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mesoderm of early vertebrate embryos gradually acquires dorsal–ventral polarity during embryogenesis. This specification of mesoderm is thought to be regulated by several polypeptide growth factors. Bone morphogenetic protein (BMP), a member of the TGF-β family, is one of the regulators suggested to be involved in the formation of ventral mesoderm. In this paper, the nature of the endogenous BMP signal in dorsal–ventral specification was assessed in early Xenopus embryos using a dominant negative mutant of the Xenopus BMP receptor. In ectodermal explant assays, disruption of endogenous BMP signaling by the mutant receptor changed the competence of the explant cells to mesoderm-inducing factors, activin and basic fibroblast growth factor (bFGF), and led to formation of neural tissue without mesoderm induction. This result suggests that endogenous BMP acts as a ventral mesoderm modifier rather than a ventral mesoderm inducer, and that interactions between endogenous BMP and mesoderm-inducing factors may be important in dorsal–ventral patterning of embryonic mesoderm. In addition, the induction of neural tissue by inhibition of the BMP signaling pathway also suggests involvement of BMP in neural induction. 相似文献
4.
5.
Differential expression of two distinct MyoD genes in Xenopus. 总被引:1,自引:0,他引:1
6.
Injected Wnt RNA induces a complete body axis in Xenopus embryos. 总被引:20,自引:0,他引:20
Studies in Xenopus have shown that growth factors of the TGF beta and Wnt oncogene families can mimic aspects of dorsal axis formation. Here we directly compare the inductive properties of two Wnt proteins by injecting synthetic mRNA into developing embryos. The results show that Wnt-1 and Xwnt-8 can induce a new and complete dorsal axis and can rescue the development of axis-deficient, UV-irradiated embryos. In contrast, activin mRNA injection induces only a partial dorsal axis that lacks anterior structures. These studies demonstrate that the mechanism of Wnt-induced axis duplication results from the creation of an independent Spemann organizer. The relationship between the properties of the endogenous dorsal inducer and the effects of Wnts and activins is discussed. 相似文献
7.
Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. 总被引:68,自引:0,他引:68
Peptide growth factors may play a role in patterning of the early embryo, particularly in the induction of mesoderm. We have explored the role of fibroblast growth factor (FGF) in early Xenopus development by expressing a dominant negative mutant form of the FGF receptor. Using a functional assay in frog oocytes, we found that a truncated form of the receptor effectively abolished wild-type receptor function. Explants from embryos expressing this dominant negative mutant failed to induce mesoderm in response to FGF. In whole embryos the mutant receptor caused specific defects in gastrulation and in posterior development, and overexpression of a wild-type receptor could rescue these developmental defects. These results demonstrate that the FGF signaling pathway plays an important role in early embryogenesis, particularly in the formation of the posterior and lateral mesoderm. 相似文献
8.
Homeotic gene expression in the visceral mesoderm of Drosophila embryos. 总被引:18,自引:10,他引:8 下载免费PDF全文
The visceral mesoderm adhering to the midgut constitutes an internal germ layer of the Drosophila embryo that stretches along most of the anteroposterior axis (parasegment 2-13). Most cells of the midgut visceral mesoderm express exclusively one of five homeotic genes. Three of these genes, Antennapedia, Ultrabithorax and abdominal-A are active in parasegmental domains characteristic for this germ layer as they are nonoverlapping and adjacent. The common boundaries between these domains depend on mutual regulatory interactions between the three genes. The same genes function to control gut morphogenesis. Two further homeotic genes Sex combs reduced and Abdominal-B are expressed at both ends of the midgut visceral mesoderm, although absence of their expression does not appear to affect gut morphogenesis. There are no regulatory interactions between these two and the other homeotic genes. As a rule, the anterior limit of each homeotic gene domain in the visceral mesoderm is shifted posteriorly by one parasegment compared to the ectoderm. The domains result from a set of regulatory processes that are distinct from the ones ruling in other germ layers. 相似文献
9.
Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis 总被引:1,自引:0,他引:1
The mesoderm, comprising the tissues that come to lie entirely in the deep layer, originates in both the superficial epithelial and the deep mesenchymal layers of the early amphibian embryo. Here, we characterize the mechanisms by which the superficial component of the presumptive mesoderm ingresses into the underlying deep mesenchymal layer in Xenopus tropicalis and extend our previous findings for Xenopus laevis. Fate mapping the superficial epithelium of pregastrula stage embryos demonstrates ingression of surface cells into both paraxial and axial mesoderm (including hypochord), in similar patterns and amounts in both species. Superficial presumptive notochord lies medially, flanked by presumptive hypochord and both overlie the deep region of the presumptive notochord. These tissues are flanked laterally by superficial presumptive somitic mesoderm, the anterior tip of which also appears to overlay the presumptive deep notochord. Time-lapse recordings show that presumptive somitic and notochordal cells move out of the roof of the gastrocoel and into the deep region during neurulation, whereas hypochordal cells ingress after neurulation. Scanning electron microscopy at the stage and position where ingression occurs suggests that superficial presumptive somitic cells in X. laevis ingress into the deep region as bottle cells whereas those in X. tropicalis ingress by "relamination" (e.g., [Dev. Biol. 174 (1996) 92]). In both species, the superficially derived presumptive somitic cells come to lie in the medial region of the presumptive somites during neurulation. By the early tailbud stages, these cells lie at the horizontal myoseptum of the somites. The morphogenic pathway of these cells strongly resembles that of the primary slow muscle pioneer cells of the zebrafish. We present a revised fate map of Xenopus, and we discuss the conservation of superficial mesoderm within amphibians and across the chordates and its implications for the role of this tissue in patterning the mesoderm. 相似文献
10.
11.
Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos 总被引:15,自引:0,他引:15
In frogs, mesoderm presumably derives from presumptive ectoderm by induction under the control of diffusible substances produced by the endoderm. To analyze the early phase of mesoderm induction, I have isolated cDNA copies of mRNAs induced in presumptive ectoderm by mesoderm inducing factor secreted by the XTC cell line. One of the inducible mRNAs encodes a homeodomain-containing protein that is likely to play a regulatory role in development. Mix.1 behaves as an immediate early response to induction, and its kinetics of expression suggest a major role for MBT in the control of inducible gene expression. Unexpectedly, Mix.1 is expressed mostly in the future endoderm, suggesting that endoderm may be formed by induction in a similar way as mesoderm. 相似文献
12.
13.
Patterning of the Xenopus gastrula marginal zone in the axis running equatorially from the Spemann organizer-the so--called "dorsal/ventral axis"--has been extensively studied. It is now evident that patterning in the animal/vegetal axis also needs to be taken into consideration. We have shown that an animal/vegetal pattern is apparent in the marginal zone by midgastrulation in the polarized expression domains of Xenopus brachyury (Xbra) and Xenopus nodal-related factor 2 (Xnr2). In this report, we have followed cells expressing Xbra in the presumptive trunk and tail at the gastrula stage, and find that they fate to presumptive somite, but not to ventrolateral mesoderm of the tailbud embryo. From this, we speculate that the boundary between the Xbra- and Xnr2-expressing cells at gastrula corresponds to a future tissue boundary. In further experiments, we show that the level of mitogen-activated protein kinase (MAPK) activation is polarized along the animal/vegetal axis, with the Xnr2-expressing cells in the vegetal marginal zone having no detectable activated MAPK. We show that inhibition of MAPK activation in Xenopus animal caps results in the conversion of Xnr2 from a dorsal mesoderm inducer to a ventral mesoderm inducer, supporting a role for Xnr2 in induction of ventral mesoderm. 相似文献
14.
15.
16.
Transition from symmetry to asymmetry is a central theme in cell and developmental biology. In Xenopus embryos, dorsal-ventral asymmetry is initiated by a microtubule-dependent cytoplasmic rotation during the first cell cycle after fertilization. Here we show that the cytoplasmic rotation initiates differential cytoplasmic polyadenylation of maternal Xwnt-11 RNA, encoding a member of the Wnt family of cell-cell signaling factors. Translational regulation of Xwnt-11 mRNA along the dorsal-ventral axis results in asymmetric accumulation of Xwnt-11 protein. These results demonstrate spatially regulated translation of a maternal cell-signaling factor along the vertebrate dorsal-ventral axis and represent a novel mechanism for Wnt gene regulation. Spatial regulation of maternal RNA translation, which has been established in invertebrates, appears to be an evolutionarily conserved mechanism in the generation of intracellular asymmetry and the consequential formation of the multicellular body pattern. 相似文献
17.
18.
Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis 总被引:24,自引:0,他引:24
While there is convincing evidence implicating Drosophila int-1 in pattern regulation, the normal role of int-1 in vertebrate development is unclear. We have injected Xenopus eggs with mouse int-1 RNA and monitored subsequent development. Injected RNA is translated and the protein widely distributed. Embryos develop into apparently normal gastrulae, but almost all surviving neurulae have a bifurcated anterior and expanded posterior neural plate. Bifurcation of the neural plate was abolished by substitution of a single, conserved cysteine residue and was dependent on the presence of a signal peptide sequence in the int-1 protein. Histological examination indicates that underlying axial mesodermal structures were duplicated. This result suggests that ectopic int-1 expression leads to dual axis formation and points to a role for int-1 in patterning processes in vertebrate development. 相似文献
19.
We describe the identification and expression pattern of Xenopus frizzled 4 (Xfz4) gene during early development. Xfz4 protein presents characteristic features of a frizzled family member. The mature protein sequence of Xfz4 is 93% identical to murine Mfz4. Xfz4 is a maternal mRNA, its expression level remains constant during early development. The mRNA is first localized during gastrulation to the dorsal presumptive neuroectoderm. At the end of gastrulation, Xfz4 mRNA is detected in the dorso-anterior neuroectoderm. During neurulation, Xfz4 mRNA is expressed as a band on both side of the forebrain, and in the trunk lateral plate mesoderm. As development proceeds, expression of Xfz4 mRNA in the trunk lateral plate mesoderm decreases but persists in the forebrain. It is also expressed in the posterior unsegmented somitic mesoderm from late tail-bud stage onward. 相似文献
20.