首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The work described in this paper was carried out to define the chemical function a new member of the isocitrate lyase enzyme family derived from the flowering plant Dianthus caryophyllus. This protein (Swiss-Prot entry Q05957) is synthesized in the senescent flower petals and is named the "petal death protein" or "PDP". On the basis of an analysis of the structural contexts of sequence markers common to the C-C bond lyases of the isocitrate lyase/phosphoenolpyruvate mutase superfamily, a substrate screen that employed a (2R)-malate core structure was designed. Accordingly, stereochemically defined C(2)- and C(3)-substituted malates were synthesized and tested as substrates for PDP-catalyzed cleavage of the C(2)-C(3) bond. The screen identified (2R)-ethyl, (3S)-methylmalate, and oxaloacetate [likely to bind as the hydrate, C(2)(OH)(2) gem-diol] as the most active substrates (for each, k(cat)/K(m) = 2 x 10(4) M(-)(1) s(-)(1)). In contrast to the stringent substrate specificities previously observed for the Escherichia coli isocitrate and 2-methylisocitrate lyases, the PDP tolerated hydrogen, methyl, and to a much lesser extent acetate substituents at the C(3) position (S configuration only) and hydoxyl, methyl, ethyl, propyl, and to a much lesser extent isobutyl substituents at C(2) (R configuration only). It is hypothesized that PDP functions in oxalate production in Ca(2+) sequestering and/or in carbon scavenging from alpha-hydroxycarboxylate catabolites during the biochemical transition accompanying petal senescence.  相似文献   

2.
Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family alpha-oxyanion carboxylate intermediate/transition state) and Mg2+ was determined at 1.9 A resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an alpha/beta barrel fold and two subunits swapping their barrel's C-terminal alpha-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The Nepsilon of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into alpha-oxocarboxylate-containing compounds was confirmed by 1H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an alpha-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (kcat = 7500 s(-1) and Km = 2.2 mM) and 3-methyloxaloacetate (kcat = 250 s(-1) and Km = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.  相似文献   

3.
Aspergillus niger produces oxalic acid through the hydrolysis of oxaloacetate, catalyzed by the cytoplasmic enzyme oxaloacetate acetylhydrolase (OAH). The A. niger genome encodes four additional open reading frames with strong sequence similarity to OAH yet only the oahA gene encodes OAH activity. OAH and OAH-like proteins form subclass of the isocitrate lyase/PEP mutase enzyme superfamily, which is ubiquitous present filamentous fungi. Analysis of function-specific residues using a superfamily-based approach revealed an active site serine as a possible sequence marker for OAH activity. We propose that presence of this serine in family members correlates with presence of OAH activity whereas its absence correlates with absence of OAH. This hypothesis was tested by carrying out a serine mutagenesis study with the OAH from the fungal oxalic acid producer Botrytis cinerea and the OAH active plant petal death protein as test systems.  相似文献   

4.
Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range. The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg2+ binding first (Kd = 140 +/- 40 microM), are kcat = 105 +/- 2 s(-1) and P-pyr Km = 5 +/- 1 microM. PEP (slow substrate kcat = 2 x 10(-4) s(-1)), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 +/- 0.1 mM, 17 +/- 1 microM, and 210 +/- 10 microM, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (alpha/beta)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.  相似文献   

5.
Following acetate, propionate is the second most abundant low molecular mass carbon compound found in soil. Many microorganisms, including most, if not all fungi, as well as several aerobic bacteria, such as Escherichia coli and Salmonella enterica oxidize propionate via the methylcitrate cycle. The enzyme 2-methylisocitrate lyase (PrpB) from Escherichia coli catalysing the last step of this cycle, the cleavage of 2-methylisocitrate to pyruvate and succinate, was crystallised and its structure determined to a resolution of 1.9A. The enzyme, which strictly depends on Mg(2+) for catalysis, belongs to the isocitrate lyase protein family. A common feature of members of this enzyme family is the movement of a so-called "active site loop" from an open into a closed conformation upon substrate binding thus shielding the reactants from the surrounding solvent. Since in the presented structure, PrpB contains, apart from a Mg(2+), no ligand, the active site loop is found in an open conformation. This conformation, however, differs significantly from the open conformation present in the so far known structures of ligand-free isocitrate lyases. A possible impact of this observation with respect to the different responses of isocitrate lyases and PrpB upon treatment with the common inhibitor 3-bromopyruvate is discussed. Based on the structure of ligand-bound isocitrate lyase from Mycobacterium tuberculosis a model of the substrate-bound PrpB enzyme in its closed conformation was created which provides hints towards the substrate specificity of this enzyme.  相似文献   

6.
Liao CJ  Chin KH  Lin CH  Tsai PS  Lyu PC  Young CC  Wang AH  Chou SH 《Proteins》2008,73(2):362-371
The crystal structure of the DFA0005 protein complexed with alpha-ketoglutarate (AKG) from an alkali-tolerant bacterium Deinococcus ficus has been determined to a resolution of 1.62 A. The monomer forms an incomplete alpha7/beta8 barrel with a protruding alpha8 helix that interacts extensively with another subunit to form a stable dimer of two complete alpha8/beta8 barrels. The dimer is further stabilized by four glycerol molecules situated at the interface. One unique AKG ligand binding pocket per subunit is detected. Fold match using the DALI and SSE servers identifies DFA0005 as belonging to the isocitrate lyase/phosphoenolpyruvate mutase (ICL/PEPM) superfamily. However, further detailed structural and sequence comparison with other members in this superfamily and with other families containing AKG ligand indicate that DFA0005 protein exhibits considerable distinguishing features of its own and can be considered a novel member in this ICL/PEPM superfamily.  相似文献   

7.
BACKGROUND: Isocitrate lyase catalyses the first committed step of the carbon-conserving glyoxylate bypass, the Mg(2+)-dependent reversible cleavage of isocitrate into succinate and glyoxylate. This metabolic pathway is an inviting target for the control of a number of diseases, because the enzymes involved in this cycle have been identified in many pathogens including Mycobacterium leprae and Leishmania. RESULTS: As part of a programme of rational drug design the structure of the tetrameric Aspergillus nidulans isocitrate lyase and its complex with glyoxylate and a divalent cation have been solved to 2.8 A resolution using X-ray diffraction. Each subunit comprises two domains, one of which adopts a folding pattern highly reminiscent of the triose phosphate isomerase (TIM) barrel. A 'knot' between subunits observed in the three-dimensional structure, involving residues towards the C terminus, implies that tetramer assembly involves considerable flexibility in this part of the protein. CONCLUSIONS: Difference Fourier analysis together with the pattern of sequence conservation has led to the identification of both the glyoxylate and metal binding sites and implicates the C-terminal end of the TIM barrel as the active site, which is consistent with studies of other enzymes with this fold. Two disordered regions of the polypeptide chain lie close to the active site, one of which includes a critical cysteine residue suggesting that conformational rearrangements are essential for catalysis. Structural similarities between isocitrate lyase and both PEP mutase and enzymes belonging to the enolase superfamily suggest possible relationships in aspects of the mechanism.  相似文献   

8.
Delta-crystallin, the major soluble protein component of avian and reptilian eye lenses, is highly homologous to the urea cycle enzyme, argininosuccinate lyase (ASL). In duck lenses, there are two highly homologous delta crystallins, delta I and delta II, that are 94% identical in amino acid sequence. While delta II crystallin has been shown to exhibit ASL activity in vitro, delta I is enzymatically inactive. The X-ray structure of a His to Asn mutant of duck delta II crystallin (H162N) with bound argininosuccinate has been determined to 2.3 A resolution using the molecular replacement technique. The overall fold of the protein is similar to other members of the superfamily to which this protein belongs, with the active site located in a cleft formed by three different monomers in the tetramer. The active site of the H162N mutant structure reveals that the side chain of Glu 296 has a different orientation relative to the homologous residue in the H91N mutant structure [Abu-Abed et al. (1997) Biochemistry 36, 14012-14022]. This shift results in the loss of the hydrogen bond between His 162 and Glu 296 seen in the H91N and turkey delta I crystallin structures; this H-bond is believed to be crucial for the catalytic mechanism of ASL/delta II crystallin. Argininosuccinate was found to be bound to residues in each of the three monomers that form the active site. The fumarate moiety is oriented toward active site residues His 162 and Glu 296 and other residues that are part of two of the three highly conserved regions of amino acid sequence in the superfamily, while the arginine moiety of the substrate is oriented toward residues which belong to either domain 1 or domain 2. The analysis of the structure reveals that significant conformational changes occur on substrate binding. The comparison of this structure with the inactive turkey delta I crystallin reveals that the conformation of domain 1 is crucial for substrate affinity and that the delta I protein is almost certainly inactive because it can no longer bind the substrate.  相似文献   

9.
Bacillus stearothermophilus phosphatase PhoE is a member of the cofactor-dependent phosphoglycerate mutase superfamily possessing broad specificity phosphatase activity. Its previous structural determination in complex with glycerol revealed probable bases for its efficient hydrolysis of both large, hydrophobic, and smaller, hydrophilic substrates. Here we report two further structures of PhoE complexes, to higher resolution of diffraction, which yield a better and thorough understanding of its catalytic mechanism. The environment of the phosphate ion in the catalytic site of the first complex strongly suggests an acid-base catalytic function for Glu83. It also reveals how the C-terminal tail ordering is linked to enzyme activation on phosphate binding by a different mechanism to that seen in Escherichia coli phosphoglycerate mutase. The second complex structure with an unusual doubly covalently bound trivanadate shows how covalent modification of the phosphorylable His10 is accompanied by small structural changes, presumably to catalytic advantage. When compared with structures of related proteins in the cofactor-dependent phosphoglycerate mutase superfamily, an additional phosphate ligand, Gln22, is observed in PhoE. Functional constraints lead to the corresponding residue being conserved as Gly in fructose-2,6-bisphosphatases and Thr/Ser/Cys in phosphoglycerate mutases. A number of sequence annotation errors in databases are highlighted by this analysis. B. stearothermophilus PhoE is evolutionarily related to a group of enzymes primarily present in Gram-positive bacilli. Even within this group substrate specificity is clearly variable highlighting the difficulties of computational functional annotation in the cofactor-dependent phosphoglycerate mutase superfamily.  相似文献   

10.
D-Aminoacylase is an attractive candidate for commercial production of D-amino acids through its catalysis in the hydrolysis of N-acyl-D-amino acids. We report here the first D-aminoacylase crystal structure from A. faecalis at 1.5-A resolution. The protein comprises a small beta-barrel, and a catalytic (betaalpha)(8)-barrel with a 63-residue insertion. The enzyme structure shares significant similarity to the alpha/beta-barrel amidohydrolase superfamily, in which the beta-strands in both barrels superimpose well. Unexpectedly, the enzyme binds two zinc ions with widely different affinities, although only the tightly bound zinc ion is required for activity. One zinc ion is coordinated by Cys(96), His(220), and His(250), while the other is loosely chelated by His(67), His(69), and Cys(96). This is the first example of the metal ion coordination by a cysteine residue in the superfamily. Therefore, D-aminoacylase defines a novel subset and is a mononuclear zinc metalloenzyme but containing a binuclear active site. The preferred substrate was modeled into a hydrophobic pocket, revealing the substrate specificity and enzyme catalysis. The 63-residue insertion containing substrate-interacting residues may act as a gate controlling access to the active site, revealing that the substrate binding would induce a closed conformation to sequester the catalysis from solvent.  相似文献   

11.
The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non‐native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues.  相似文献   

12.
Alkylation of isocitrate lyase from Escherichia coli by 3-bromopyruvate   总被引:5,自引:0,他引:5  
The inactivation of tetrameric isocitrate lyase from Escherichia coli by 3-bromopyruvate, exhibiting saturation kinetics, is accompanied by the loss of one sulfhydryl per subunit. The substrates glyoxylate and isocitrate protect against inactivation whereas the substrate succinate does not. The modification by 3-bromopyruvate (equimolar to subunits) imparts striking resistance to digestion of isocitrate lyase by trypsin, chymotrypsin, and V8 protease as well as a major decrease in the intensity of tryptophan fluorescence. After alkylation, the sequence Gly-His-Met-Gly-Gly-Lys is found following the modified Cys residue in the tryptic peptide representing positions 196-201. Thus Cys195 is alkylated by 3-bromopyruvate.  相似文献   

13.
Guanine deaminase, a key enzyme in the nucleotide metabolism, catalyzes the hydrolytic deamination of guanine into xanthine. The crystal structure of the 156-residue guanine deaminase from Bacillus subtilis has been solved at 1.17-A resolution. Unexpectedly, the C-terminal segment is swapped to form an intersubunit active site and an intertwined dimer with an extensive interface of 3900 A(2) per monomer. The essential zinc ion is ligated by a water molecule together with His(53), Cys(83), and Cys(86). A transition state analog was modeled into the active site cavity based on the tightly bound imidazole and water molecules, allowing identification of the conserved deamination mechanism and specific substrate recognition by Asp(114) and Tyr(156'). The closed conformation also reveals that substrate binding seals the active site entrance, which is controlled by the C-terminal tail. Therefore, the domain swapping has not only facilitated the dimerization but has also ensured specific substrate recognition. Finally, a detailed structural comparison of the cytidine deaminase superfamily illustrates the functional versatility of the divergent active sites found in the guanine, cytosine, and cytidine deaminases and suggests putative specific substrate-interacting residues for other members such as dCMP deaminases.  相似文献   

14.
Two crystal structures of the C123S mutant of 2-methylisocitrate lyase have been determined, one with the bound reaction products, Mg(2+)-pyruvate and succinate, and the second with a bound Mg(2+)-(2R,3S)-isocitrate inhibitor. Comparison with the structure of the wild-type enzyme in the unbound state reveals that the enzyme undergoes a conformational transition that sequesters the ligand from solvent, as previously observed for two other enzyme superfamily members, isocitrate lyase and phosphoenolpyruvate mutase. The binding modes reveal the determinants of substrate specificity and stereoselectivity, and the stringent specificity is verified in solution using various potential substrates. A model of bound 2-methylisocitrate has been developed based on the experimentally determined structures. We propose a catalytic mechanism involving an alpha-carboxy-carbanion intermediate/transition state, which is consistent with previous stereochemical experiments showing inversion of configuration at the C(3) of 2-methylisocitrate. Structure-based sequence analysis and phylogenic tree construction reveal determinants of substrate specificity, highlight nodes of divergence of families, and predict enzyme families with new functions.  相似文献   

15.
Members of the aspartase/fumarase superfamily share a common tertiary and quaternary fold, as well as a similar active site architecture; the superfamily includes aspartase, fumarase, argininosuccinate lyase, adenylosuccinate lyase, δ-crystallin, and 3-carboxy-cis,cis-muconate lactonizing enzyme (CMLE). These enzymes all process succinyl-containing substrates, leading to the formation of fumarate as the common product (except for the CMLE-catalyzed reaction, which results in the formation of a lactone). In the past few years, X-ray crystallographic analysis of several superfamily members in complex with substrate, product, or substrate analogues has provided detailed insights into their substrate binding modes and catalytic mechanisms. This structural work, combined with earlier mechanistic studies, revealed that members of the aspartase/fumarase superfamily use a common catalytic strategy, which involves general base-catalyzed formation of a stabilized aci-carboxylate (or enediolate) intermediate and the participation of a highly flexible loop, containing the signature sequence GSSxxPxKxN (named the SS loop), in substrate binding and catalysis.  相似文献   

16.
During the course of our large-scale genome analysis a conserved domain, currently detectable only in the genomes of Drosophila melanogaster, Caenorhabditis elegans and Anopheles gambiae, has been identified. The function of this domain is currently unknown and no function annotation is provided for this domain in the publicly available genomic, protein family and sequence databases. The search for the homologues of this domain in the non-redundant sequence database using PSI-BLAST, resulted in identification of distant relationship between this family and the alkaline phosphatase-like superfamily, which includes families of aryl sulfatase, N-acetylgalactosomine-4-sulfatase, alkaline phosphatase and 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGM). The fold recognition procedures showed that this new domain could adopt a similar 3-D fold as for this superfamily. Most of the phosphatases and sulfatases of this superfamily are characterized by functional residues Ser and Cys respectively in the topologically equivalent positions. This functionally important site aligns with Ser/Thr in the members of the new family. Additionally, set of residues responsible for a metal binding site in phosphatases and sulphtases are conserved in the new family. The in-depth analysis suggests that the new family could possess phosphatase activity.  相似文献   

17.
Escherichia coli isocitrate lyase was inactivated by iodacetate in a pseudo-first-order process. Complete inactivation was associated with the incorporation of only one carboxymethyl group per enzyme subunit. The substrate and products of the enzyme protected against inactivation, suggesting that the reactive group may be located at the active site. Isolation and sequencing of a carboxymethylated peptide showed that the modified residue was a cysteine, in the sequence Cys-Gly-His-Met-Gly-Gly-Lys. The reactivity of isocitrate lyase to iodoacetate declined with pH, following a titration curve for a group of pKa 7.1. The Km of the enzyme for isocritrate declined over the same pH range.  相似文献   

18.
The structure of Escherichia coli cofactor-dependent phosphoglycerate mutase (dPGM), complexed with the potent inhibitor vanadate, has been determined to a resolution of 1.30 A (R-factor 0.159; R-free 0.213). The inhibitor is present in the active site, principally as divanadate, but with evidence of additional vanadate moieties at either end, and representing a different binding mode to that observed in the structural homologue prostatic acid phosphatase. The analysis reveals the enzyme-ligand interactions involved in inhibition of the mutase activity by vanadate and identifies a water molecule, observed in the native E.coli dPGM structure which, once activated by vanadate, may dephosphorylate the active protein. Rather than reflecting the active conformation previously observed for E.coli dPGM, the inhibited protein's conformation resembles that of the inactive dephosphorylated Saccharomyces cerevisiae dPGM. The provision of a high-resolution structure of both active and inactive forms of dPGM from a single organism, in conjunction with computational modelling of substrate molecules in the active site provides insight into the binding of substrates and the specific interactions necessary for three different activities, mutase, synthase and phosphatase, within a single active site. The sequence similarity of E.coli and human dPGMs allows us to correlate structure with clinical pathology.  相似文献   

19.
BACKGROUND: D-Serine is a co-agonist of the N-methyl-D-aspartate subtype of glutamate receptors, a major neurotransmitter receptor family in mammalian nervous systems. D-Serine is converted from L-serine, 90% of which is the product of the enzyme phosphoserine phosphatase (PSP). PSP from M. jannaschii (MJ) shares significant sequence homology with human PSP. PSPs and P-type ATPases are members of the haloacid dehalogenase (HAD)-like hydrolase family, and all members share three conserved sequence motifs. PSP and P-type ATPases utilize a common mechanism that involves Mg(2+)-dependent phosphorylation and autodephosphorylation at an aspartyl side chain in the active site. The strong resemblance in sequence and mechanism implies structural similarity among these enzymes. RESULTS: The PSP crystal structure resembles the NAD(P) binding Rossmann fold with a large insertion of a four-helix-bundle domain and a beta hairpin. Three known conserved sequence motifs are arranged next to each other in space and outline the active site. A phosphate and a magnesium ion are bound to the active site. The active site is within a closed environment between the core alpha/beta domain and the four-helix-bundle domain. CONCLUSIONS: The crystal structure of MJ PSP was determined at 1.8 A resolution. Critical residues were assigned based on the active site structure and ligand binding geometry. The PSP structure is in a closed conformation that may resemble the phosphoserine bound state or the state after autodephosphorylation. Compared to a P-type ATPase (Ca(2+)-ATPase) structure, which is in an open state, this PSP structure appears also to be a good model for the closed conformation of P-type ATPase.  相似文献   

20.
The major facilitator superfamily represents the largest group of secondary active membrane transporters in the cell. The 3.3A resolution structure of a member of this protein superfamily, the glycerol-3-phosphate transporter from the Escherichia coli inner membrane, reveals two domains connected by a long central loop. These N- and C-terminal domains, each containing a six-helix bundle, are related by pseudo-twofold symmetry. A substrate translocation pore is located between the two domains and is open to the cytoplasm. Two arginines at the closed end of the pore comprise the substrate-binding site. Biochemical experiments show that, upon substrate binding, the protein adopts a more compact conformation. The crystal structure suggests that the transporter operates through a single binding site, alternating access mechanism via a rocker-switch type of movement of the N- and C-terminal domains. The structure and mechanism of the glycerol-3-phosphate transporter form a paradigm for other members of the major facilitator superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号