首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trichromatic primates have a 'red-green' chromatic channel in addition to luminance and 'blue-yellow' channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations.  相似文献   

2.
We compared the chromatic contrast thresholds of drifting (2Hz) red-green sine-wave gratings of horizontal, vertical, and two oblique orientations at three spatial frequencies (2, 4, 8 cpd). Luminance contrast thresholds for yellow-black gratings were also obtained. The classic oblique effect was found for high spatial frequency luminance and chromatic stimuli. For chromatic thresholds, a significant difference was found between the horizontal and vertical thresholds of all observers. One observer was retested with her head tilted 45 deg and demonstrated that the anisotropy was specific to retinal coordinates. These results give evidence for orientation selectivity in the chromatic channel which is at least partially independent of that in the luminance channel. We estimated the degree of lateral chromatic aberration in our observers' eyes and discuss the possible contribution of this aberration to the horizontal-vertical difference in the chromatic channel.  相似文献   

3.
We have monitored the development of infant colour vision by measuring chromatic contrast sensitivity and acuity in eight young infants over a period of 6 months. Steady-state visual evoked potentials (VEPS) were recorded in response to both chromatic (red-green) and luminance (red-black or green-black) patterns that were reversed in contrast over time. For most infants, no response could be obtained to chromatic stimuli of any size or contrast before 5 weeks of age, although luminance stimuli of 20% contrast gave reliable responses at that age. When responses to chromatic stimuli first appeared, they could be obtained only with stimuli of very low spatial frequency, 20 times lower than the acuity for luminance stimuli. Both contrast sensitivity and acuity for chromatic stimuli increased steadily, more rapidly than for luminance stimuli. As the spectral selectivities of infant cones are similar to those of adults, the difference in rate of development of luminance and chromatic contrast sensitivity and acuity stimuli probably reflects neural development of the infant colour system.  相似文献   

4.
We designed visual evoked potentials experiments to study the differential aspects of colour and brightness coding in man. The substitution of equally bright red and green stimuli for a background yellow was investigated and compared with different luminance increments and decrements of red and green. A dominant N87 component was found for a colour change from yellow to brighter red colours, which was less pronounced for green and absent for yellow luminance changes. It is also absent for pure red luminance increments and green luminance changes, but reappears with red luminance decrements or red-offset. The data are discussed within the framework of a new concept of how the visual system fuses red-green information and black-white border information. Retinal X-cells can transmit colour and high spatial frequency achromatic information simultaneously by encoding only the presence of edges (a.c.) for the black-white stimuli and the presence of both edges (a.c.) and uniform areas of colour (d.c.) for red-green stimuli. Phylogenetically this kind of information transmission enables colour vision to be implemented in a retina such as the cat's by adding only a second class of cones. Barlow's economy principle will be violated for colour in the periphery, but restored early in the striate cortex where there is an early decoding of the combined chromatic and achromatic information by the concentric double opponent cells. The N87 behaviour correlates with the proposed discharge of peripheral X-type cells, but not with the discharge of cortical double opponent concentric or simple cells, which no longer respond to homogeneous colour stimuli. It is suggested that N87 may be generated by geniculate afferents in the dendritic arborization of cortical cells, reflecting the behaviour of peripheral units, and thus the violation of the economy principle, rather than the next step in cortical processing. The early cortical restoration of the economy principle is supported by the absence of any further dissociated behaviour for colour and brightness in later components.  相似文献   

5.
The perception of blur in images can be strongly affected by prior adaptation to blurry images or by spatial induction from blurred surrounds. These contextual effects may play a role in calibrating visual responses for the spatial structure of luminance variations in images. We asked whether similar adjustments might also calibrate the visual system for spatial variations in color. Observers adjusted the amplitude spectra of luminance or chromatic images until they appeared correctly focused, and repeated these measurements either before or after adaptation to blurred or sharpened images or in the presence of blurred or sharpened surrounds. Prior adaptation induced large and distinct changes in perceived focus for both luminance and chromatic patterns, suggesting that luminance and chromatic mechanisms are both able to adjust to changes in the level of blur. However, judgments of focus were more variable for color, and unlike luminance there was little effect of surrounding spatial context on perceived blur. In additional measurements we explored the effects of adaptation on threshold contrast sensitivity for luminance and color. Adaptation to filtered noise with a 1/f spectrum characteristic of natural images strongly and selectively elevated thresholds at low spatial frequencies for both luminance and color, thus transforming the chromatic contrast sensitivity function from lowpass to nearly bandpass. These threshold changes were found to reflect interactions between different spatial scales that bias sensitivity against the lowest spatial grain in the image, and may reflect adaptation to different stimulus attributes than the attributes underlying judgments of image focus. Our results suggest that spatial sensitivity for variations in color can be strongly shaped by adaptation to the spatial structure of the stimulus, but point to dissociations in these visual adjustments both between luminance and color and different measures of spatial sensitivity.  相似文献   

6.
We sought to determine the extent to which red-green, colour-opponent mechanisms in the human visual system play a role in the perception of drifting luminance-modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance-modulated (yellow-black) test sinusoids was measured following adaptation to isoluminant red-green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1-16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1-4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal-frequency-dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance-modulated motion targets drifting at speeds of up to at least 32 degrees s(-1). We argue that such mechanisms most probably lie within a parvocellular-dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.  相似文献   

7.
Multidimensional scaling of principal interstimulus chromatic differences, measured by the value of ERG reaction of the frog retina allowed to construct a model reflecting colour differentiating function of this level. It follows from this model that the frog retina has colour differentiating characteristics answering standard requirements of trichromatic vision. Colour-opponent system of frog is represented by the functions of red-green and blue-yellow opponentness compared with the analogous functions obtained for man.  相似文献   

8.
Chromatic and achromatic visual evoked potentials (VEP) were evaluated in 39 patients with idiopathic Parkinson's disease (PD) (age 64.0 ± 8.6 years) and 43 healthy controls (age 62.8 ± 8.7 years). The following pattern-reversal checkerboard stimuli were performed: (1) achromatic with luminance contrast 86% (achr.hk.); (2) achromatic with luminance contrast 20% (achr.lk.); (3) chromatic isoluminant blue-yellow (by.); (4) chromatic isoluminant red-green (rg.). The mean latencies N70, P100, and N135 of chromatic and achromatic VEP were significantly delayed in patients with PD as compared to controls. The highest rate (41.0%) of pathological findings could be demonstrated by achromatic stimulation (luminance contrast 86%). Isolated abnormalities of chromatic VEP (in combination with normal achromatic VEP) were found in 5 (12.8%) patients. The delay of VEP-latencies was significantly correlated with the severity of motor symptoms in PD patients. We conclude that VEP are valuable tools to demonstrate a dysfunction of the visual system in PD. Although chromatic VEP are less sensitive than achromatic VEP, the combination of both will increase the diagnostic yield. Therefore, there seems to exist a variety of individual characters of visual impairment in PD.  相似文献   

9.
Current opinion holds that human colour vision is mediated primarily via a colour-opponent pathway that carries information about both wavelength and luminance contrast (type I). However, some authors argue that chromatic sensitivity may be limited by a different geniculostriate pathway, which carries information about wavelength alone (type II). We provide psychophysical evidence that both pathways may contribute to the perception of moving, chromatic targets in humans, depending on the nature of the visual discrimination. In experiment 1, we show that adaptation to drifting, red-green stimuli causes reductions in contrast sensitivity for both the detection and direction discrimination of moving chromatic targets. Importantly, the effects of adaptation are not directionally specific. In experiment 2, we show that adaptation to luminance gratings results in reduced sensitivity for the direction discrimination, but not the detection of moving chromatic targets. We suggest that sensitivity for the direction discrimination of chromatic targets is limited by a colour-opponent pathway that also conveys luminance-contrast information, whereas the detection of such targets is limited by a pathway with access to colour information alone. The properties of these pathways are consistent with the known properties of type-I and type-II neurons of the primate parvocellular lateral geniculate nucleus and their cortical projections. These findings may explain the known differences between detection and direction discrimination thresholds for chromatic targets moving at low to moderate velocities.  相似文献   

10.
Till C  Westall CA  Rovet JF  Koren G 《Teratology》2001,64(3):134-141
BACKGROUND: Previous studies in adults and animals with high level exposure to organic solvents suggested impairments in visual functioning. The objective of this pilot study was to examine the effects of maternal occupational exposure to organic solvents during pregnancy on offspring color vision and visual acuity, the development of which may be especially vulnerable to organic solvent exposure. METHODS: We conducted a prospective cohort study of 32 offspring of women who were exposed occupationally to organic solvents during pregnancy compared with 27 nonexposed children. Monocular and binocular color vision and visual acuity were assessed using the Minimalist Test and the Cardiff Cards, respectively. Children with known hereditary color vision loss were excluded. RESULTS: Solvent-exposed children had significantly higher error scores on red-green and blue-yellow color discrimination, as well as poorer visual acuity compared with the control group. Exposure index (an estimated measure of exposure intensity) was not significantly related to color discrimination or visual acuity score. Despite excluding all children with a known family history of color vision loss, clinical red-green color vision loss was found among 3 of the 32 exposed children compared with none of the matched controls. CONCLUSIONS: These preliminary findings suggest that occupational exposure to organic solvents during pregnancy is associated with an increased risk of color vision and visual acuity impairment in offspring. The importance of routine visual function screening in risk assessment after prenatal exposure to chemicals warrants further attention.  相似文献   

11.
Color and luminance contrasts attract independent attention   总被引:2,自引:0,他引:2  
Paying attention can improve vision in many ways, including some very basic functions such as contrast discrimination, a task that probably reflects very early levels of visual processing. Electrophysiological, psychophysical, and imaging studies on humans as well as single recordings in monkey show that attention can modulate the neuronal response at an early stage of visual processing, probably by acting on the response gain. Here, we measure incremental contrast thresholds for luminance and color stimuli to derive the contrast response of early neural mechanisms and their modulation by attention. We show that, for both cases, attention improves contrast discrimination, probably by multiplicatively increasing the gain of the neuronal response to contrast. However, the effects of attention are highly specific to the visual modality: concurrent attention to a competing luminance, but not chromatic pattern, greatly impedes luminance contrast discrimination; and attending to a competing chromatic, but not luminance, task impedes color contrast discrimination. Thus, the effects of attention are highly modality specific, implying separate attentional resources for different fundamental visual attributes at early stages of visual processing.  相似文献   

12.
Primate color vision has traditionally been examined in the context of diurnal activity, but recent genetic and ecological studies suggest that color vision plays a role in nocturnal primate behavior and ecology as well. In this study, we united molecular analyses of cone visual pigment (opsin) genes with visual modeling analyses of food items to explore the evolution of color vision in the folivorous woolly lemur (genus Avahi). Previous studies have shown that leaf quality, e.g., protein content, leaf toughness, and protein/toughness ratio, is significantly correlated with green-red and blue-yellow chromatic differences, suggesting a potential role of color in leaf discrimination in Avahi, and, consequently, a potential adaptive advantage to color vision in this taxon. Phylogenetic selection tests determined that the strength of selection on the SWS1 opsin gene to retain blue-sensitive SWS cones did not significantly differ in Avahi compared to day-active primates. Genotyping of the M/LWS opsin gene in 60 individuals from nine species found that the 558-nm-sensitive (red-sensitive) allele is conserved across all Avahi. Finally, we measured spectral reflectance from five species of young leaves consumed by Avahi and background foliage in Ranomafana National Park and modeled performance of possible S and M/L pigment pairs for detecting these food items under different nocturnal illuminations (e.g. twilight, moonlight). We found that the observed cone pigment pair in Avahi was optimally tuned for color-based detection of young green leaves in all nocturnal light environments, suggesting a potential adaptive role of nocturnal color vision in selection for dichromacy in this genus.  相似文献   

13.
Like catarrhines, some platyrrhines show exposed and reddish skin, raising the possibility that reddish signals have evolved convergently. This variation in skin exposure and color combined with sex‐linked polymorphic color vision in platyrrhines presents a unique, and yet underexplored, opportunity to investigate the relative importance of chromatic versus achromatic signals, the influence of color perception on signal evolution, and to understand primate communication broadly. By coding the facial skin exposure and color of 96 platyrrhines, 28 catarrhines, 7 strepsirrhines, 1 tarsiiform, and 13 nonprimates, and by simulating the ancestral character states for these traits, we provide the first analysis of the distribution and evolution of facial skin exposure and color in platyrrhini. We highlight ways in which studying the presence and use of color signals by platyrrhines and other primates will enhance our understanding of the evolution of color signals, and the forces shaping color vision.  相似文献   

14.
The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10–20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.  相似文献   

15.
Howler monkeys (platyrrhini) have evolved routine trichromatic color vision independently from catarrhines, which presents an opportunity to test hypotheses concerning the adaptive value of distinguishing reddish from greenish hues. A longstanding hypothesis posits that trichromacy aids in the efficient detection of reddish-ripe fruits, which could be an advantage for the detection of the nutritional content of the fruit, such as sugars. In the present study, we assessed fruit visual conspicuity and selection based on color and sucrose content by wild mantled howler monkeys (Alouatta palliata) on Agaltepec Island, Mexico. We used colorimetry to classify dietary fruits as cryptic (greenish) or conspicuous (reddish) against their background leaves. Species-specific color models indicate that trichromatic howler monkeys should be more efficient in discriminating the conspicuous ripe fruits from leaves compared to detecting cryptic ripe fruits from leaves. We found howler monkeys consume more cryptic fruits compared to conspicuous fruits, and that they consume more unripe fruits than ripe fruits. The consumption (acceptance) of fruit was independent of sucrose content, and thus this disaccharide may not play an essential role in mantled howler food selection. Our findings suggest that routine trichromatic color vision may aid in the detection and discrimination of conspicuously colored fruits, but that the final decision whether to accept or reject a fruit probably involves the use of other senses in addition to vision.  相似文献   

16.
Goyret J  Kelber A 《PloS one》2012,7(4):e34629
Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general.  相似文献   

17.
Color signals in human motion-selective cortex   总被引:4,自引:0,他引:4  
The neural basis for the effects of color and contrast on perceived speed was examined using functional magnetic resonance imaging (fMRI). Responses to S cone (blue-yellow) and L + M cone (luminance) patterns were measured in area V1 and in the motion area MT+. The MT+ responses were quantitatively similar to perceptual speed judgments of color patterns but not to color detection measures. We also measured cortical motion responses in individuals lacking L and M cone function (S cone monochromats). The S cone monochromats have clear motion-responsive regions in the conventional MT+ position, and their contrast-response functions there have twice the responsivity of S cone contrast-response functions in normal controls. But, their responsivity is far lower than the normals' responsivity to luminance contrast. Thus, the powerful magnocellular input to MT+ is either weak or silent during photopic vision in S cone monochromats.  相似文献   

18.
The adaptive importance of polymorphic color vision found in many New World and some prosimian primates has been discussed for many years. Polymorphism is probably maintained in part through a heterozygote advantage for trichromatic females, as such individuals are observed to have greater foraging success when selecting ripe fruits against a background of forest leaves. However, recent work also suggests there are some situations in which dichromatic individuals may have an advantage, and that variation in color vision among individuals possessing different alleles may also be significant. Alleles that confer a selective advantage to individuals are expected to occur at a higher frequency in populations than those that do not. Therefore, analyzing the frequencies of color vision alleles in wild populations can add to our understanding of the selective advantages of some color vision phenotypes over others. With this aim, we used molecular techniques to determine the frequencies of color vision alleles in 12 wild tamarin groups representing three species of the genus Saguinus. Our results show that allele frequencies are not equal, possibly reflecting different selective regimes operating on different color vision phenotypes.  相似文献   

19.
Color ornaments are often viewed as products of countervailing sexual and natural selection, because more colorful, more attractive individuals may also be more conspicuous to predators. However, while evidence for such countervailing selection exists for vertebrate color ornaments (e.g., Trinidadian guppies), similar studies have yet to be reported in invertebrates. Indeed, evidence for female mate choice based on extant variation in male coloration is limited in invertebrates, and researchers have not explicitly asked whether more attractive males are also more conspicuous to predators. Here we provide evidence that more chromatic male cabbage white butterflies (Pieris rapae) are more attractive to females but should also be more conspicuous to predators. Female P. rapae preferentially mate with more chromatic males when choosing from populations of males with naturally occurring or commensurate, experimentally induced color variation. Mathematical models of female color vision confirm that females should be able to discriminate color differences between prospective mates. Further, chromatic and luminance contrast scores from female visual system models better predicted male mating success than did measures of male color derived more directly from color spectra. Last, models of avian color vision suggest that preferred males should be more conspicuous to known avian predators.  相似文献   

20.
Color vision in man is based upon three different cone types, which are quite likely arranged in a semi-ordered array in the retina. The model proposes that this ordering is an inherent part of the genetic code that sets up the color vision mechanism, and that the specification for each cone type (red, green or blue) also includes a specification for its place in the larger structure of which it is a part. One possible positional mosaic for the three cone types is proposed, together with its degeneracies into anomalous (red-green) color mechanisms. Assuming only one fixed probability for a degenerate transition, the population frequencies for color anomalies predicted from the model agree closely with the observed frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号