首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cultivation of exotic Penaeus vannamei in Thailand began on a very limited scale in the late 1990s, but a Thai government ban on the cultivation of P. monodon in freshwater areas in 2000 led many Thai shrimp farmers to shift to cultivation of P. vannamei. Alarmed by the possibility of Taura syndrome virus (TSV) introduction, the Thai Department of Fisheries required that imported stocks of P. vannamei be certified free of TSV by RT-PCR (Reverse Trasciption Polymerase Chain Reaction) testing. During the interval of allowed importation, over 150,000 broodstock shrimp were imported, 67% of these from China and Taiwan. Despite the safeguards, TSV outbreaks occurred and we confirmed the first outbreak by RT-PCR in early 2003. This resulted in a governmental ban on all shrimp broodstock imports from February 2003, but TSV outbreaks have continued, possibly due to original introductions or to the continued illegal importation of stocks. To determine the origin of the TSV in Thailand, the viral coat protein gene VP1 was amplified by RT-PCR from several shrimp specimens found positive for TSV by RT-PCR from January to November 2003. These included 7 samples from P. vannamei disease outbreaks in Thailand, 3 other non-diseased shrimp samples from Thailand and Burma and 6 samples including P. vannamei and P. japonicus from China. Comparison revealed that the Thai, Burmese and Chinese TSV types formed a clade distinct from a clade of TSV types from the Americas.  相似文献   

2.
3.
Taura syndrome virus (TSV) was first reported as a serious cause of shrimp mortality limited to reared Penaeus (Litopenaeus) vannamei in the Americas, where it spread principally through regional and international transfer of live post larvae (PL) and broodstock. Subsequently, through importation of infected broodstock, TSV outbreaks spread to Asia, first to Taiwan and China and then to Thailand, Indonesia and Korea. Since its introduction to Thailand, outbreaks have occasionally been reported from rearing ponds stocked with batches of specific pathogen free (SPF) P. vannamei PL that tested negative for TSV by nested RT-PCR assay. Since it was possible that the outbreaks may have occurred via horizontal transfer of TSV from wild carrier species, we tested 5 common native crustaceans that live in and around shrimp ponds (2 palaemonid shrimp species, Palaemon styliferus and Macrobrachium lanchesteri, and 3 species of crabs, Sesarma mederi, Scylla serrata and Uca vocans) for susceptibility to TSV in experimental challenges. We found that U. vocans, S. serrata and S. mederi did not die but, respectively, gave strong RT-PCR reactions indicating heavy viral load at 5, 10 and 15 d post-injection of TSV and 10, 15 and up to 50 d after feeding with TSV-infected P. vannamei carcasses. Also after feeding, P. styliferus did not die, but a high proportion gave strong RT-PCR reactions at 5 d post-challenge and no reactions at 15 d. Similarly after feeding, M. lanchesteri showed no mortality and gave only light RT-PCR reactions at 2 d, moderate reactions at 5 d and no reaction at 15 d. By contrast, transmission experiments from the TSV-infected crabs and palaemonid shrimp via water or feeding resulted in death of all the exposed P. vannamei from 8 to 12 d post-challenge and all were positive for heavy viral load by RT-PCR assay. Despite the results of these laboratory challenge tests, natural TSV infections were not detected by nested RT-PCR in samples of these species taken from the wild. These results indicated that transmission of TSV from infected crabs and palaemonid shrimp via water or feeding might pose a potential risk to shrimp aquaculture.  相似文献   

4.
In Korea, mass mortality occurred among cultured shrimp with visible macroscopic white spots in 2000, and we confirmed the presence of white spot syndrome virus (WSSV) in the tissues of moribund shrimp by electron microscopy. In order to identify the characteristics of this Korean isolate of WSSV, we cloned and characterized its genomic DNA coding for VP24, VP26, and VP28. On the nucleotide level, VP24, VP26, and VP28 of the Korean isolate were found to be 100%, 100%, and 99% identical to those of Taiwan, Thailand and Chinese isolates, respectively. On the deduced amino-acid level, all 3 virion proteins showed 100% identity to those of the foreign isolates. The extent of sequence identity suggests that the Korean isolate originated from the same ancestor as the Taiwanese, Thai and Chinese isolates.  相似文献   

5.
6.
It is the opinion of the authors of the Comment on Do et al. (2006), that those authors incorrectly interpreted their test results, which are more likely the result of mislabeling of samples or within-laboratory contamination, and that the TSV isolates found in Penaeus vannamei in Korea in 2004 and 2005 did not originate from Hawaii as claimed by the authors, but from a country (or countries) in southeast Asia. Finally, we believe that the authors did not follow proper international guidelines, extend a professional courtesy to the supplier of the disputed shrimp sample, nor take a critical approach in interpreting their own data. It is unfortunate that the authors did not follow through with additional testing, or seek a second opinion from an independent laboratory, before implicating shrimp imported from Hawaii as the source of TSV in Korea.  相似文献   

7.
8.
9.
10.
The Infectious hypodermal and hematopoietic necrosis virus(IHHNV) and Taura syndrome virus(TSV) are two important shrimp viruses in cultured shrimp in America.These two viruses were transmitted to China at the beginning of the 21st century.In this study,214 shrimp samples of Penaeus vannamei were collected from seven different areas of China and tested by PCR for IHHNV and TSV infection.The results showed that there were a high prevalence of IHHNV(65.42%) and low prevalence of TSV(3.27%) in the tested samples.Several samples were found to be co-infected with these two viruses.A 3 kb fragment of 7 positive IHHNV samples and a structure protein region(ORF2) of three TSV positive samples were amplified and sequenced.The sequence comparison indicated that both IHHNV and TSV sequenced in China have a low genetic variations compared with the prototype IHHNV and TSV from Hawaii.Phylogenetic analysis showed that TSV isolates were clustered into two groups,Asia and America group,which was genetically correlated to geographic distribution.  相似文献   

11.
A Taura syndrome virus (TSV) isolate from cultured Penaeus vannamei grown in Belize, Central America was characterized and shown to be a unique isolate. Mortality rates in laboratory infections of specific pathogen-free (SPF) P. vannamei, reactivity of the virus with monoclonal antibody (MAb) 1A1 and phylogenetic analysis demonstrated that the Belize isolate (BLZ02TSV) is a new valiant of TSV. The Hawaiian 1994 TSV isolate (HI94TSV, GenBank AF277675) was used as the reference isolate for these studies. Laboratory infections of SPF P. vannamei with BLZ02TSV demonstrated higher mortalities and earlier onset of mortalities compared to infections with HI94TSV. Shrimp tissues infected with BLZ02TSV reacted with a TSV-specific gene probe by in situ hybridization and were positive by RT-PCR using TSV diagnostic primers, thus indicating that the isolate was TSV. However, Western blot analysis and immunohistochemistry using MAb 1A1 demonstrated that BLZ02TSV did not react with the antibody, suggestive of changes in the VP1 region of the genome that codes for the polypeptide to which MAb 1A1 binds. Phylogenetic analysis of a 1.3 kbp fragment of the TSV VP1 capsid region revealed that BLZ02TSV represents a distinct group among more than 29 isolates of TSV studied thus far. This research demonstrates that BLZ02TSV is a unique isolate of TSV and reiterates a problem related to the use of MAb 1A1 for detection of TSV in clinical specimens.  相似文献   

12.
The gene sequence encoding VP3 capsid protein of Taura syndrome virus (TSV) was cloned into pGEX-6P-1 expression vector and transformed into Escherichia coli BL21. After induction, recombinant GST-VP3 (rVP3) fusion protein was obtained and further purified by electro-elution before use in immunizing Swiss mice for production of monoclonal antibodies (MAb). One MAb specific to glutathione-S-transferase (GST) and 6 MAb specific to VP3 were selected using dot blotting and Western blotting. MAb specific to VP3 could be used to detect natural TSV infections in farmed whiteleg shrimp Penaeus vannamei by dot blotting and Western blotting, without cross reaction to shrimp tissues or other shrimp viruses, such as white spot syndrome virus (WSSV), yellow head virus (YHV), monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). These MAb were also used together with those specific for WSSV to successfully detect TSV and WSSV in dual infections in farmed P. vannamei.  相似文献   

13.
Historic emergence, impact and current status of shrimp pathogens in Asia   总被引:9,自引:0,他引:9  
It is estimated that approximately 60% of disease losses in shrimp aquaculture have been caused by viral pathogens and 20% by bacterial pathogens. By comparison, losses to fungi and parasites have been relatively small. For bacterial pathogens, Vibrio species are the most important while for viral pathogens importance has changed since 2003 when domesticated and genetically selected stocks of the American whiteleg shrimp Penaeus (Litopenaeus) vannamei (Boone 1931) replaced the formerly dominant giant tiger or black tiger shrimp Penaeus (Penaeus) monodon (Fabricius 1798) as the dominant cultivated species. For both species, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal. Next most important for P. vannamei is infectious myonecrosis virus (IMNV), originally reported from Brazil, but since 2006 from Indonesia where it was probably introduced by careless importation of shrimp aquaculture stocks. So far, IMNV has not been reported from other countries in Asia. Former impacts of Taura syndrome virus (TSV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) on this species have dramatically declined due to the introduction of tolerant stocks and to implementation of good biosecurity practices. Another problem recently reported for P. vannamei in Asia is abdominal segment deformity disease (ASDD), possibly caused by a previously unknown retrovirus-like agent. Next most important after WSSV and YHV for P. monodon is monodon slow growth syndrome (MSGS) for which component causes appear to be Laem Singh virus (LSNV) and a cryptic integrase containing element (ICE). Hepatopancreatic parvovirus (HPV) and monodon baculovirus (MBV) may be problematic when captured P. monodon are used to produce larvae, but only in the absence of proper preventative measures. Since 2009 increasing losses with P. vannamei in China, Vietnam and now Thailand are associated with acute hepatopancreatic necrosis syndrome (AHPNS) of presently unknown cause. Despite these problems, total production of cultivated penaeid shrimp from Asia will probably continue to rise as transient disease problems are solved and use of post larvae originating from domesticated SPF shrimp stocks in more biosecure settings expands.  相似文献   

14.
15.
Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is widespread in cultured Penaeus monodon and P. vannamei in Thailand. It causes runt-deformity syndrome that is characterized by physical abnormalities and stunted growth in P. vannamei, but causes no apparent disease in P. monodon. In both species, the virus may produce Cowdry Type A inclusions in tissues of ectodermal and mesodermal origin, but these are common in P. vannamei and rare in P. monodon. The virus can be more easily detected in both species by IHHNV-specific PCR primers. By in situ hybridization (ISH) using specific IHHNV probes, fixed phagocytes associated with myocardial cells tended to show strong positive reactions in both shrimp species. Ovarian and neural tissue (neurons in the nerve ganglia and glial cells in the nerve cord) were ISH positive for IHHNV only in P. vannamei. By transmission electron microscopy, necrotic cells were found in the gills of IHHNV-infected P. vannamei, while paracrystalline arrays of virions and apoptotic cells rather than necrotic cells were found in the lymphoid organ of IHHNV-infected P. monodon. Thus, it is possible that apoptosis in P. monodon contributes to the absence of clinical disease from IHHNV. These findings reveal different responses to IHHNV infection by the 2 shrimp species. A curious feature of IHHNV infection in P. monodon was inconsistency in the comparative viral load amongst tissues of different specimens, as detected by both ISH and real-time PCR. This inconsistency in apparent tissue preference and the reasons for different cellular responses between the 2 shrimp species remain unexplained.  相似文献   

16.
Taura syndrome virus (TSV) is one of the most important shrimp viruses affecting farmed shrimp worldwide. After an acute phase during which the likelihood of mortality is elevated, infected shrimp enter a chronic phase during which shrimp appear to resume normal behavior and display no gross signs of infection. This study was designed to determine if chronically TSV-infected shrimp Litopenaeus vannamei are compromised by the infection. Specifically we investigated whether chronically infected shrimp could tolerate a drop in salinity as strongly as uninfected shrimp. The study consisted of 3 trials that compared survival of uninfected and chronically TSV-infected L. vannamei after drops in salinity from 24 ppt to salinities varying from 18 to 0 ppt. Logistic regression detected a significant effect of TSV infection on survival of chronically infected shrimp (p < 0.05). Salinity drops from 24 ppt to 3 and 6 ppt resulted in statistically different survivals (p < 0.05). Survival rates were similar among groups for salinity drops to greater than 6 ppt or less than 3 ppt. Salinities at which 50% of the shrimp died (LC50) were 3.06 ppt for the uninfected and 6.65 ppt for the chronically infected groups. Moreover, histopathological analysis of chronically infected shrimp that were moribund or recently dead showed no signs of having reverted to the acute stage of the disease. These results suggest that chronically infected shrimp are not able to tolerate a salinity drop as strongly as uninfected shrimp.  相似文献   

17.
Since our first report in 1998, white spot syndrome virus (WSSV) has become wide-spread on the southern and western coasts of Korea. Almost all shrimp in ponds die within 3 to 4 d after the first dead shrimp are observed with gross lesions ranging from abnormal red body discoloration to white spots in the cuticle. From one isolate, we cloned and sequenced WSSV genomic DNA coding for VP19 and VP28 envelope proteins and VP15 and VP35 nucleocapsid proteins. Putative protein sequences were submitted to GenBank and assigned accession numbers AY316119 (VP19), AY324881 (VP28), AY374120 (VP15) and AY325896 (VP35). At the nucleotide level, VP19, VP28 and VP15 sequences were, respectively, 99, 100 and 100% identical to those of China, Indonesia, Japan and the United States and the VP35 sequence was 100% identical to that of a Taiwanese isolate. The deduced amino-acid sequences were 99 to 100% identical to those from other countries. In VP19, C and T in the foreign isolates were replaced by T and A in the Korean isolate at Positions 57 and 218 nt, respectively, downstream of A (+) of the VP19 start codon. The change at Position 218 nt resulted in valine in the foreign isolates being replaced by aspartate in the Korean isolate.  相似文献   

18.
Taura syndrome virus (TSV) is a highly virulent pathogen of Litopenaeus vannamei, has affected shrimp aquaculture throughout the world, and threatens wild populations. Despite its importance, little work has been done on the pathogen's formal epidemiology. Therefore we developed a compartment model for epidemics of TSV in closed populations of L. vannamei. The model includes five compartments, uninfected susceptible, prepatently infected, acutely infected, chronically infected, and dead infected shrimp. The transmission coefficients, patency coefficient, virulence coefficients, and removal coefficient (disappearance of dead infected shrimp) control the dynamics of the model. We estimated the coefficients in laboratory studies and inserted the estimates in the model to characterize TSV epidemics and to estimate the basic reproduction ratio R(0) and threshold density for TSV epidemics in L. vannamei. Further we examined through computer simulation the effect of varying the coefficients on R(0). Decreases in transmission decrease R(0), decreases in virulence increase R(0), increases in patency do not affect R(0), and increases in recovery most likely increase R(0) but under some conditions might decrease it.  相似文献   

19.
20.
A standardized inoculation model was used in 2 separate experiments to gauge the virulence of 3 white spot syndrome virus (WSSV) isolates from Thailand and Vietnam (WSSV Thai-1, WSSV Thai-2, and WSSV Viet) in Penaeus vannamei juveniles. Mortality patterns (Expt 1) were compared and WSSV-positive cells quantified (Expt 2) in tissues following intramuscular inoculation of shrimp with the most (WSSV Thai-1) and least (WSSV Viet) virulent isolates as determined by Expt 1. The results of Expt 1 demonstrated that mortalities began at 36 h post inoculation (hpi) for both Thai isolate groups and at 36 to 60 hpi for the Viet isolate group. Cumulative mortality reached 100% 96 to 240 h later in shrimp challenged with the WSSV Viet isolate compared to shrimp challenged with the Thai isolates. WSSV infection was verified in all groups by indirect immunofluorescence. In Expt 2, WSSV-infected cells were quantified by immunohistochemical analysis of both dead and time-course sampled shrimp. WSSV-positive cells were detected in tissues of Thai-1 inoculated dead and euthanized shrimp from 24 hpi onwards and from 36 hpi onwards in shrimp injected with the Viet isolate. Significantly more infected cells were found in tissues of dead shrimp inoculated with the Thai-1 than in Viet isolate-inoculated shrimp. In these experiments, substantial differences in virulence were demonstrated between the WSSV isolates. The Vietnamese isolate induced a more chronic disease and mortality pattern than was found for the Thai isolates, possibly because it infected fewer cells. This difference was most pronounced in gills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号