首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homogenate preparations of human liver have been prepared and over 75% of the particulate neuraminidase activity (which comprises approx. 90% of the total activity) has been solubilized using 0.85% (w/v) Triton X-100 in 25 mM phosphate buffer (pH 6.8). The solubilized neuraminidase activity is extremely labile, but can be stabilized for at least 4 weeks at 2–4°C, using 10 mM N-acetylneuraminic acid. Kinetic characterization of homogenate and solubilized supernatant fluid neuraminidase activities indicated comparable pH optimum curves (maximum activity at pH 4.5–4.7) and apparent Km values (0.2–0.4 mM) for the synthetic fluorometric substrate 4-methylbelliferyl-α-D-N-acetylneuraminic acid. Isoelectric focusing has been performed on human liver homogenates and Triton X-100-solubilized neuraminidase activities, and the presence of several forms (4–6) with isoelectric points (pI values) between 4.4 and 5.2 has been demonstrated in both preparations. The similar kinetic and isoelectric focusing properties of the two preparations suggest that the solubilized enzyme activity is representative of the homogenate activity and that the solubilized enzyme is suitable for purification purposes.  相似文献   

2.
A fluorogenic substrate of neuraminidase, 4-methylumbelliferone N-acetylneuraminic acid ketoside (MUN), was synthesized. Km values were obtained for Clostridium perfringens neuraminidase and strains of A- and B-type influenza neuraminidase from chicken red blood cell influenza virus eluates.  相似文献   

3.
4-Methylumbelliferyl α-ketoside of N-acetylneuraminic acid was synthesized by reacting the sodium salt of 4-methylumbelliferone with the 2-chloro-2-deoxy derivative of peracetylated methyl N-acetylneuraminate, followed by preparative silica gel chromatography, deblocking, and purification by gel filtration on Sephadex G-25. The final product was isolated as either the sodium or ammonium salt, and its suitability as a substrate for neuraminidase was evaluated. The optimal pH values for various neuraminidases were 5.6 in acetate buffer (Arthrobacter ureafaciens), 5.0–5.1 in acetate buffer (Clostridium perfringens), and 4.4 in phosphate-citrate buffer (human fibroblasts). Km values for these enzymes at the optimal pH were 6 × 10?4m (Arthrobacter), 1 × 10?4m (Clostridium), and 3 × 10?4m (human fibroblasts).  相似文献   

4.
Cultured skin fibroblasts from a patient suffering from generalized N-acetylneuraminic acid storage disease were found to accumulate large amounts (approx. 4.0 μmol/g fresh weight) of free N-acetylneuraminic acid in a lysosome-enriched subcellular fraction. However, there were no detectable deficiencies in lysosomal hydrolase activities (including neuraminidase), and the activities of CMP-N-acetylneuraminic acid synthetase and N-acetylneuraminic acid aldolase were within normal limits. The cellular glycoconjugate composition was normal, and pathologic fibroblasts labeled with either [3H]glucosamine-HCl or N-[3H]acetylmannosamine showed a marked accumulation of labeled free N-acetylneuraminic acid, along with elevated incorporation into sialoglycoconjugates. Neither normal nor pathologic fibroblasts secreted labeled free N-acetylneuraminic acid into the culture medium. These results are consistent with an inherited defect in N-acetylneuraminic acid reutilization, resulting in the lysosomal accumulation of the free monosaccharide in generalized N-acetylneuraminic acid storage disease.  相似文献   

5.
Neuraminidase substrates of high specific activity (>300 μCi/μmol) were prepared by reduction of sialyllactose with NaB3H4, followed by separation of the 2 → 3 and 2 → 6 isomers of [3H]sialyllactitol by paper chromatography. Hydrolysis of sialyllactitol by neuraminidase was monitored by measuring the radioactivity in the neutral reaction product, which was separated from the charged substrate by passage over a small anion exchange column. The assay was applied to the neuraminidase activity of cultured human skin fibroblasts. The Km was found to be 1.1 mm for both substrates; the pH optimum, 4.0; the 2 → 3 isomer was hydrolyzed twice as fast as the 2 → 6. In several genetic disorders associated with neuraminidase deficiency, the activity toward both isomers was reduced almost completely (mucolipidoses I and II; Goldberg syndrome), or only partially (mucolipidosis III; adult myoclonus syndrome); however, the relative activity towards the two isomers remained approximately the same in all cases.  相似文献   

6.
Kinetic properties of homogeneous preparations of pig kidney and pig muscle pyruvate kinases (EC 2.7.1.40) were studied. Both isozymes showed a hyperbolic relationship to ADP with an apparent Km of 0.3 mm. K+ and Mg2+ were necessary for the activity of both isozymes, and their dependences on these cations were similar. The muscle isozyme expressed Michaelis-Menten type of kinetics with respect to phosphoenolpyruvate, and the apparent Km was the same (0.03 mm) from pH 5.5 to pH 8.0. In contrast, the dependence on phosphoenolpyruvate changed with pH for the kidney isozyme. It showed similar properties to the muscle isozyme at pH 5.5–7.0 (apparent Km of 0.08 mm), while two apparent Km values for this substrate were present at pH 7.5–8.0, one low (0.1 mm) and one high (0.3–0.6 mm). At pH 7.5, fructose 1,6-bisphosphate converted the kidney isozyme to a kinetical form where only the lower apparent Km for phosphoenolpyruvate was detected. On the other hand, in the presence of alanine or phenylalanine the kidney pyruvate kinase showed only the higher Km for this substrate. At low phosphoenolpyruvate levels both isozymes were inhibited by phenylalanine, and half-maximal inhibition was found at 0.3 and 2.2 mm for the kidney and muscle isozymes, respectively. At a 5 mm concentration of the substrate only the kidney isozyme was inhibited, the apparent Ki being the same. Alanine inhibited the kidney isozyme (apparent Ki at 0.3 mm, irrespective of substrate concentration). No effect was seen on the muscle isozyme. Fructose 1,6-bisphosphate was an activator of the kidney isozyme at phosphoenolpyruvate concentrations below 1.0 mm It also counteracted the inhibition by alanine or phenylalanine of this isozyme. ATP inhibited both isozymes, and this inhibition was not counteracted by fructose 1,6-bisphosphate. The kidney isozyme showed both a high and a low apparent Km for phosphoenolpyruvate in the presence of ATP. The influence of the effectors on the activity of both isozymes varied markedly with pH, except for the action of ATP. At low substrate concentrations, however, the inhibitor action of ATP on the muscle enzyme was diminished around pH 7.5, in contrast to higher or lower pH values. Alanine or phenylalanine were more effective as inhibitors at higher pH values, and fructose 1,6-bisphosphate stimulated the kidney isozyme only at pH levels above pH 6.5. The influence of activators and inhibitors on the regulation of the kidney and muscle pyruvate kinases is discussed.  相似文献   

7.
Several alkaline phosphatases (EC 3.1.3.1) could be obtained from pig kidney brush-border membrane on extraction with butan-1-ol. Three of the multiple forms were separated by DEAE-cellulose chromatography and further purified. They form a regular series with different degrees of glycosylation (mainly owing to N-acetylneuraminic acid), of charge, of molecular weight, of stability to temperature, to pH and to urea, of minimal requirement for Mg2+ and of extractability by butan-1-ol. In contrast, the detectable antigenic sites, the inhibition by amino acids and the pH-dependency of Km and Vmax. were identical for these multiple forms. On treatment with neuraminidase, the multiple forms became identical in all their properties. It was therefore concluded that the microheterogeneity of alkaline phosphatase is due to different degrees of glycosylation at polypeptide chains which appear to be otherwise identical.  相似文献   

8.
《Phytochemistry》1986,25(10):2275-2277
The sucrose catabolic enzymes acid invertase (EC 3.2.1.26) and alkaline invertase (EC 3.2.1.27) were studied in young and mature Citrus sinensis leaf tissue. In young, expanding leaves (60 % final length) soluble acid invertase activity predominated, while soluble alkaline invertase activity predominated in mature leaves. The acid and alkaline invertase activities were separated on Sephadex G-200. The acid invertase had an Mr of approximately 60 000, pH maximum of 4.5 and apparent Km of 3.3 mM sucrose. The alkaline invertase had an Mr of approximately 200 000, pH maxima of 6.8 and an apparent Km of 20 mM sucrose. Alkaline invertase was strongly inhibited by 10 mM Tris while acid invertase was not. Possible physiological roles for the two invertases are discussed.  相似文献   

9.
We have purified glutaminase 65-fold from cow brain; the final specific activity is 24 μmol/min/mg. The enzyme is stable between pH 7.5 and 9.0 and has maximal activity at pH 8.8. It requires Pi for activity. The dependence of activity on Pi concentration is sigmoidal; 50 mmPi gives half-maximal velocity at pH 8.8. At 0.2 mPi, pH 8.8, the dependence of activity on glutamine concentration is hyperbolic; the observed KGln was 30 mm. Increasing Pi concentrations increase the apparent Vm and decrease the apparent KGln. NH4+ does not inhibit at concentrations up to 0.1 m. Glutamic acid inhibits competitively with respect to glutamine; at 0.2 mPi pH 8.8, KGln was 30 mm and KGlu was 19 mm. The results are consistent with a model in which NH4+ is released irreversibly from the enzyme-substrate complex and is the first product released. The activity of glutaminase appears to be independent of the nature of the buffer with which it is equilibrated before being assayed.  相似文献   

10.
The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high.  相似文献   

11.
Biosynthesis of sebaceous gland waxes was studied with the uropygial gland of the white-crowned sparrow as the experimental tissue. A 27,000g particulate preparation from this gland catalyzed reduction of palmitoyl-CoA to hexadecanol at an optimum pH near 5.0 with NADPH as the preferred reductant. At low protein concentrations, palmitoyl-CoA inhibited the reductase and bovine serum albumin prevented this inhibition. An apparent Km of 0.3 mm was calculated for palmitoyl-CoA from linear double-reciprocal plots ignoring the inhibitory concentration of the substrate. An apparent Km of 3 mm was calculated for NADPH from linear double-reciprocal plots. Palmitoyl-CoA reduction was inhibited by thiol directed reagents such as p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetamide. The particulate fraction also catalyzed esterification of hexadecanol with endogenous C16 and C18 acyl moieties with an optimum pH of 7.5. Stimulation of esterification of hexadecanol by ATP and CoA as well as by low concentrations of palmitoyl-CoA suggests that the CoA esters of fatty acids are involved in esterification. Tween-20 stimulated esterification of hexadecanol and hexadecyl dodecanoate was the major wax ester formed in the presence of Tween-20 suggesting that the C12 acid of Tween-20 participated in esterification. Ignoring the inhibitory concentrations of hexadecanol (>0.2 mm), an apparent Km of 0.1 mm was calculated from linear double-reciprocal plots. α-Hydroxylation of palmitic acid was demonstrated in cell-free extracts of the uropygial gland. A 27,000g particulate preparation from the gland catalyzed the reduction of α-hydroxypalmitic acid to hexadecane-1,2-diol with NADPH as the preferred reductant at an optimum pH near 6.5. This reduction required both ATP and CoA, suggesting that α-hydroxyacyl-CoA was the true substrate for the reductase. With stereospecifically labeled NADP3H, it was shown that both acyl-CoA reduction and α-hydroxy acid reduction involved transfer of the hydride specifically from the B-side of the nicotinamide ring of NADPH. Subcellular fractionation using sucrose density gradient centrifugation strongly suggested that the enzymes which catalyzed reduction of palmitoyl-CoA and α-hydroxypalmitic acid as well as the esterification of hexadecanol are localized in the microsomal membranes of the gland.  相似文献   

12.
In this work, we report the phenotypic and biochemical effects of deleting the C-terminal cytoplasmic portion of the NhaP2 cation/proton antiporter from Vibrio cholerae. While the deletion changed neither the expression nor targeting of the Vc-NhaP2 in an antiporter-less Escherichia coli strain, it resulted in a changed sensitivity of the host to sodium ions at neutral pH, indicating an altered Na+ transport through the truncated variant. When assayed in inside-out sub-bacterial vesicles, the truncation was found to result in greatly reduced K+/H+ and Na+/H+ antiport activity at all pH values tested and a greater than fivefold decrease in the affinity for K+ (measured as the apparent K m) at pH 7.5. Being expressed in trans in a strain of V. cholerae bearing a chromosomal nhaP2 deletion, the truncated nhaP2 gene was able to complement its inability to grow in potassium-rich medium at pH 6.0. Thus the residual K+/H+ antiport activity associated with the truncated Vc-NhaP2 was still sufficient to protect cells from an over-accumulation of K+ ions in the cytoplasm. The presented data suggest that while the cytoplasmic portion of Vc-NhaP2 is not involved in ion translocation directly, it is necessary for optimal activity and substrate binding of the Vc-NhaP2 antiporter.  相似文献   

13.
A specific assay to measure the activity of the enzyme acetyl-CoA:arylamine N-acetyltransferase (EC 2.3.1.5) from pigeon liver is described. The assay is based on the HPLC analysis of N-acetylserotonin formed by the enzymatic reaction. A reversed-phase column (Spherisorb 5-μm ODS 2; 150 × 3.2 mm) eluted with 0.1 M sodium acetate (pH 4.75)/methanol (75:25) permits baseline separation of serotonin and N-acetylserotonin within 5.3 min. Several variables on the enzyme reaction were studied to obtain maximum activity. The enzyme is most active in glycine buffer at pH 9.5. The apparent Km value for serotonin (at 0.6 mM CoASAc) is 0.246 mM and 9.9 μM for CoASAc (at 1.5 mM serotonin). To avoid acetyl-CoA or N-acetylserotonin consumption in side-reactions, the enzyme was purified. A two-step purification process (ammonium sulfate fractionation and affinity chromatography on immobilised amethopterin) yielded 60–70% of the initial enzyme activity with a purification factor of 455–560.  相似文献   

14.
The specific activity of acid ceramidase (N-acylsphingosine deacylase, EC 3.5.1.23) was measured at pH4.5 in normal fibroblasts and in fibroblasts from patients with Farber disease and obligate heterozygotes. Greater activity was found when the synthetically made ceramide substrates contained shorter-chain fatty acids or higher content of double bonds. Acid ceramidase activities towards N-lauroyl- (C12:0), N-myristoyl- (C14:0) and N-palmitoyl- (C16:0) sphingosine (C18:1) were respectively about 38, 26 and 6 times higher than the activity towards the N-stearoyl (C18:0) substrate. The activity towards N-linolenoylsphingosine (C18:3/C18:1), N-linoleoylsphingosine (C18:2/C18:1) and N-oleoylsphingosine (C18:1/C18:1) were respectively about 5, 4 and 3 times higher than the activity towards N-stearoylsphingosine (C18:0/C18:1). The activity towards N-stearoyldihydrosphingosine (C18:0/C18:0) was about 40% of that towards N-stearoylsphingosine. Fibroblast alkaline ceramidase possessed significant activity only towards ceramides of unsaturated fatty acids, with a pH optimum of about 9.0. Deficiency of acid ceramidase activity in fibroblasts from patients with Farber disease and intermediate activities in obligate heterozygotes were demonstrated with all ceramides examined except for N-hexanoylsphingosine (C6:0/C18:1), whereas alkaline ceramidase activity was unaffected. Comparative kinetic studies of acid ceramidase activity with N-lauroylsphingosine and N-oleoylsphingosine demonstrated about 5 (2–12)-fold and 7 (4–17)-fold higher Km values in fibroblasts from patients with Farber disease as compared with normal controls. N-Lauroylsphingosine, towards which acid ceramidase activity in control fibroblasts was about 10 times higher than that towards N-oleoylsphingosine, may serve as a better substrate for enzymic diagnosis of Farber disease as well as for further characterization of the catalytically defective acid ceramidase.  相似文献   

15.
The sialidase secreted byClostridium chauvoei NC08596 was purified to apparent homogeneity by ion-exchange chromatography, gel filtration, hydrophobic interaction-chromatography, FPLC ion-exchange chromatography, and FPLC gel filtration. The enzyme was enriched about 10 200-fold, reaching a final specific activity of 24.4 U mg–1. It has a relatively high molecular mass of 300 kDa and consists of two subunits each of 150 kDa. The cations Mn2+, Mg2+, and Ca2+ and bovine serum albumin have a positive effect on the sialidase activity, while Hg2+, Cu2+, and Zn2+, chelating agents and salt decrease enzyme activity. The substrate specificity, kinetic data, and pH optimum of the enzyme are similar to those of other bacterial sialidases.Abbreviations FPLC fast protein liquid chromatography - NCTC National Collection of Type Cultures - ATCC American Type Culture Collection - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - buffer A 0.02m piperazine, 0.01m CaCl2, pH 5.5 - buffer B 0.02m piperazine, 0.01m CaCl2, 1.0m NaCl, pH 5.5 - buffer C 0.1m sodium acetate, 0.01m CaCl2, pH 5.5 - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - Neu5Ac N-acetylneuraminic acid - BSM bovine submandibular gland mucin - GD1a IV3Neu5Ac, II3Neu5Ac-GgOse4Cer - GM1 II3Neu5Ac-GgOse4Cer - MU-Neu4,5Ac2 4-methylumbelliferyl--d-N-acetyl-4-O-acetylneuraminic acid - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol bis(2-aminoethyl-ethen)-N,N,N,N-tetraacetic acid - BSA bovine serum albumin - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - IEF isoelectric focusing - IEP isoelectric point  相似文献   

16.
The carboxyl group of the terminal N-acetylneuraminic acid residue of the glycopeptide, prepared from α1-acid glycoprotein by protease digestion, was esterified with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and then reduced with sodium borohydride. The reduced glycopeptide, thus prepared, containing the reduced N-acetylneuraminic acid, was resistant to hydrolysis by neuraminidase, and consequently to other exoglycosidases. The penultimate β-d-galactosyl residue of the oligosaccharide chain of the reduced glycopeptide was hydrolyzed by β-d-galactosidase only after the removal of the terminal, reduced, sialic acid by mild hydrolysis with acid. The reduced glycopeptide should be a useful substrate for the assay of endoglycosidases in the presence of exoenzymes. It should also find use as a carbon source in the growth of endoglycosidase-elaborating bacteria.  相似文献   

17.
Sialyltransferase activity has been determined in membrane preparations containing the Golgi apparatus that were isolated from atherosclerotic and normal human aortic intima as well as in plasma of patients with documented atherosclerosis and healthy donors by measuring the transfer of N-acetylneuraminic acid (NeuAc) from CMP-NeuAc to asialofetuin. The asialofetuin sialyltransferase activity was found to be 2 times higher in the atherosclerotic intima as compared to the normal intima and 2-fold higher in patients’ plasma than in that from healthy donors. The mean values of the apparent Michaelis constant (Km) for the sialylating enzyme for both tissues did not differ and were close for the intima and plasma. In contrast, the maximal velocity (Vmax) was 2 times higher for the atherosclerotic intima than for the normal intima and 3 times higher for patients’ plasma than for that of the donors. These results suggest that the activity of asialofetuin sialyltransferases of aortal intima is enhanced in atherosclerosis as is the secretion of their soluble forms into patients’ plasma.  相似文献   

18.
Addition of 2-deoxyglucose, an inhibitor of glycosylation of proteins, to the medium of confluent cultures of human skin fibroblasts prevents the increase in specific activity of lysosomal enzymes that normally occurs after confluence. Maximal inhibition is obtained at a concentration of about 1 mM 2-deoxyglucose. The inhibition by 2-deoxyglucose is reversible. The Km, pH dependence and electrophoretic mobility of the acid hydrolases tested was the same in cells cultured with or without 2-deoxyglucose. In homogenates of cultured human skin fibroblasts, about 95% of the β-hexosaminidase and α-galactosidase activity and about 65 % of the acid phosphatase activity with β-glycerolphosphate as substrate binds to concanavalin A (ConA); 2-deoxyglucose affects only the activity able to bind to ConA. In cells cultured in the presence of 2-deoxyglucose, the specific activity of alkaline phosphodiesterase I, a plasma membrane glycoprotein is lowered. 2-Deoxyglucose has no effect on the specific activity of succinate dehydrogenase, lactate dehydrogenase or total cellular protein.  相似文献   

19.
A methyltransferase, which catalyzes the methylation of luteolin (Km, 16 μM) using S-adenosyl-l-methionine as the methyl donor, has been purified about 38-fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The following 3,4-dihydroxy phenolic compounds were also methylated: luteolin 7-O-glucoside (Km, 28 μm), quercetin (Km, 35 μm), eriodictyol (Km, 75 μm), 5-hydroxyferulic acid (Km, 227 μm), dihydroquercetin (Km, 435 μm), and caffeic acid (Km, 770 μm). Rutin and quercetin 3-O-glucoside were poor substrates. Methylation proceeded only in the meta position. The enzyme was unable to catalyze the methylation of p-coumaric acid, m-coumaric acid, ferulic acid, isoferulic acid, sinapic acid, apigenin, or naringenin. While the isoflavones biochanin A and daidzein did not serve as substrates, texasin (6,7-dihydroxy-3′-methoxyisoflavone) was methylated (Km, 35 μm). The methylation of caffeic acid and quercetin showed a pH optimum of 8.6–8.9. The enzyme required Mg2+ ions for maximum activity (approximately 1 mm) and could be totally inhibited by EDTA (10 mm). The Km for S-adenosyl-l-methionine was 11 μm. S-Adenosyl-l-homocysteine inhibited the methylation of luteolin by S-adenosyl-l-methionine.  相似文献   

20.
Properties of phosphoenolpyruvate carboxylase in guard cells dissected from frozen-dried Vicia faba L. leaflets were studied using quantitative histochemical techniques. Control experiments with palisade cells and whole leaflet extract proved that the single cell approach was valid. Most characteristics of enzyme activity in guard cells were identical to those in the leaflet extract. The activities were highly dependent on temperature, with maximum activity at 25 to 35 C. Half-maximum activity (with 1 millimolar phosphoenolpyruvate [PEP]) was observed at 0.1 millimolar Mg2+. Two-hundred millimolar NaCl inhibited the reaction by 50%. With frozen-dried leaflet extract, the apparent Km(PEP) was 0.15 millimolar at pH 7.7; with guard cells, the values were 1.49, 0.5 to 0.8, and 0.24 millimolar in three successive experiments. Additional experiments showed that apparent Km(PEP) of guard cell activity from plants within a single growth lot was reproducible and did not change during stomatal opening. Mixed extract experiments proved that soluble compounds were not responsible for the difference observed between leaflet and guard cell activities. The differences in apparent Km(PEP) of guard cell activity could not be unambiguously interpreted. The physiological implications of the properties of this enzyme in guard cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号