首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

ATP exerts diverse effects on various cell types via specific purinergic P2Y receptors. Intracellular signaling cascades are the main routes of communication between P2Y receptors and regulatory targets in the cell.

Methods and results

We examined the role of ATP in the modulation of ERK1/2, JNK1/2, and p38 MAP kinases (MAPKs) in human colon cancer Caco-2 cells. Immunoblot analysis showed that ATP induces the phosphorylation of MAPKs in a time- and dose-dependent manner, peaking at 5 min at 10 µM ATP. Moreover, ATPγS, UTP, and UDP but not ADP or ADPβS increased phosphorylation of MAPKs, indicating the involvement of, at least, P2Y2/P2Y4 and P2Y6 receptor subtypes. RT–PCR studies and PCR product sequencing supported the expression of P2Y2 and P2Y4 receptors in this cell line. Spectrofluorimetric measurements showed that cell stimulation with ATP induced transient elevations in intracellular calcium concentration. In addition, ATP-induced phosphorylation of MAPKs in Caco-2 cells was dependent on Src family tyrosine kinases, calcium influx, and intracellular Ca2+ release and was partially dependent on the cAMP/PKA and PKC pathways and the EGFR.

General significance

These findings provide new molecular basis for further understanding the mechanisms involved in ATP functions, as a signal transducer and activator of MAP kinase cascades, in colon adenocarcinoma Caco-2 cells.  相似文献   

2.
Abstract: Incubation of Neuro 2A mouse neuroblastoma cells with UTP and UDP results in a concentration-dependent increase in the accumulation of inositol phosphates with equal potency and maximal effect; ATP, ADP, and 2-methylthioadenosine 5′-triphosphate were much less potent, indicating the expression of P2Y receptor in these cells. The effects of UTP and ATP were not affected by pretreatment of cells with pertussis toxin, indicating that the P2Y receptor in Neuro 2A cells is coupled to pertussis toxin-insensitive Gq protein. Short-term (10 min) treatment of cells with 1 µM 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in the inhibition of the UTP and ATP effects; this inhibitory effect was gradually attenuated with increased length of TPA treatment (1.5–6 h) and was not seen after long-term (24 h) treatment. Western blot analysis showed the expression of protein kinase C (PKC) α, ε, θ, and ζ in Neuro 2A cells. Translocation of PKCα, ε, and θ from the cytosol to the membrane was seen after 10 min or 1.5 h of treatment with TPA. However, partial and complete down-regulation of both membrane PKCα and θ were seen after 3 and 6 h of treatment, respectively. In contrast, the TPA-induced translocation of PKCε was maintained after 3–6 h of treatment, and almost complete down-regulation occurred only after a 24-h treatment. The observed TPA-induced inhibition of UTP- or ATP-stimulated phosphoinositide hydrolysis, therefore, correlated well with the extent of translocation of PKCε. Phosphoinositide hydrolysis induced by AlF4?, but not Ca2+ ionophores, was inhibited by a 10-min treatment with TPA. This was not seen after a 24-h treatment, indicating that the site of action of PKCε in the P2Y receptor/Gq protein/phospholipase Cβ pathway might be the Gq protein. This is the first study to show the existence of the P2Y receptor in Neuro 2A cells and the possible involvement of neuronal PKCε in the regulation of the receptor-mediated phosphoinositide turnover.  相似文献   

3.
P2 receptors are membrane-bound receptors for extracellular nucleotides such as ATP and UTP. P2 receptors have been classified as ligand-gated ion channels or P2X receptors and G protein-coupled P2Y receptors. Recently, purinergic signaling has begun to attract attention as a potential therapeutic target for a variety of diseases especially associated with gastroenterology. This study determined the ATP and UTP-induced receptor signaling mechanism in feline esophageal contraction. Contraction of dispersed feline esophageal smooth muscle cells was measured by scanning micrometry. Phosphorylation of MLC20 was determined by western blot analysis. ATP and UTP elicited maximum esophageal contraction at 30 s and 10 μM concentration. Contraction of dispersed cells treated with 10 μM ATP was inhibited by nifedipine. However, contraction induced by 0.1 μM ATP, 0.1 μM UTP and 10 μM UTP was decreased by U73122, chelerythrine, ML-9, PTX and GDPβS. Contraction induced by 0.1 μM ATP and UTP was inhibited by Gαi3 or Gαq antibodies and by PLCβ1 or PLCβ3 antibodies. Phosphorylated MLC20 was increased by ATP and UTP treatment. In conclusion, esophageal contraction induced by ATP and UTP was preferentially mediated by P2Y receptors coupled to Gαi3 and G q proteins, which activate PLCβ1 and PLCβ3. Subsequently, increased intracellular Ca2+ and activated PKC triggered stimulation of MLC kinase and inhibition of MLC phosphatase. Finally, increased pMLC20 generated esophageal contraction.  相似文献   

4.
The equal potency and efficacy of the agonists, ATP and UTP, pharmacologically distinguish the P2Y2 receptor from other nucleotide receptors. Investigation of the desensitization of the P2Y2 receptors is complicated by the simultaneous expression of different P2 nucleotide receptor subtypes. The co-expression of multiple P2 receptor subtypes in mammalian cells may have led to contradictory reports on the efficacy of the natural agonists of the P2Y2 receptor to induce desensitization. We decided to investigate the desensitization of human and murine isoforms of the P2Y2 receptor, and to rigorously examine their signaling and desensitization properties. For these purposes, we used 1321N1 astrocytoma cells stably transfected with the human or murine P2Y2 receptor cDNA, as well as human A431 cells that endogenously express the receptor. The mobilization of intracellular calcium by extracellular nucleotides was used as a functional assay for the P2Y2 receptors. While ATP and UTP activated the murine and human P2Y2 receptors with similar potencies (EC50 values were 1.5-5.8 M), ATP was ~ 10-fold less potent (IC50 = 9.1-21.2 M) than UTP (IC50 = 0.7-2.9 M) inducing homologous receptor desensitization in the cell systems examined. Individual cell analyses of the rate and dose dependency of agonist-induced desensitization demonstrated that the murine receptor was slightly more resistant to desensitization than its human counterpart. To our knowledge, this is the first individual cell study that has compared the cellular heterogeneity of the desensitized states of recombinant and endogenously expressed receptors. This comparison demonstrated that the recombinant system conserved the cellular regulatory elements needed to attenuate receptor signaling by desensitization.  相似文献   

5.
Retinoids, vitamin A derivatives, are important regulators of the growth and differentiation of skin cells. Although retinoids are therapeutically used for several skin ailments, little is known about their effects on P2 receptors, known to be involved in various functions in the skin. DNA array analysis showed that treatment of normal human epidermal keratinocytes (NHEKs) with all-trans-retinoic acid (ATRA), an agonist to RAR (retinoic acid receptor), enhanced the expression of mRNA for the P2Y2 receptor, a metabotropic P2 receptor that is known to be involved in the proliferation of the epidermis. The expression of other P2 receptors in NHEKs was not affected by ATRA. ATRA increased the mRNA for the P2Y2 receptor in a concentration-dependent fashion (1 nM to 1 μM). Am80, a synthesized agonist to RAR, showed a similar enhancement, whereas 9-cis-retinoic acid (9-cisRA), an agonist to RXR (retinoid X receptor), enhanced P2Y2 gene expression to a lesser extent. Ca2+ imaging analysis showed that ATRA also increased the function of P2Y2 receptors in NHEKs. Retinoids are known to enhance the turnover of the epidermis by increasing both proliferation and terminal differentiation. The DNA microarray analysis also revealed that ATRA upregulates various genes involved in the differentiation of NHEKs. Our present results suggest that retinoids, at least in part, exert their proliferative effects by upregulating P2Y2 receptors in NHEKs. This effect of retinoids may be closely related to their therapeutic effect against various ailments or aging events in skins such as over-keratinization, pigmentation and re-modeling.  相似文献   

6.
We investigated the effect of extracellular adenosine triphosphate (ATP) on the production of interleukin (IL)-6, whose molecules are capable of stimulating the development of osteoclasts from their hematopoietic precursors as well as are involved in signal transduction systems in human osteoblastic SaM-1 cells. These human osteoblasts constitutively expressed P2X4, P2X5, P2X6, P2Y2, P2Y5, and P2Y6 purinergic receptors. ATP increased gene- and protein-expression of IL-6 in SaM-1 cells. The expression of the IL-6 mRNA was maximal at 1h, and the increase in IL-6 synthesis in response to ATP (10-100 microM) occurred in a concentration-dependent manner. Over the same concentration range of the nucleotide that was effective for IL-6 synthesis, ATP caused an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)), which increase was inhibited by pretreatment with suramin, a P2Y receptor antagonist, or 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-trisphosphate receptor blocker, but not by the extracellular Ca(2+)-chelating agent EGTA. The pretreatment of SaM-1 cells with suramin or 2-APB also inhibited the increase in IL-6 synthesis in response to ATP. These findings suggest that extracellular ATP-induced IL-6 synthesis occurs through P2Y receptors and mobilization of Ca(2+) from internal stores in human osteoblastic cells.  相似文献   

7.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.  相似文献   

8.
There is evidence that extracellular nucleotides, acting through multiple P2 receptors, may play an important role in the regulation of bone metabolism by activating intracellular signaling cascades. We have studied the modulation of mitogen-activated protein kinase (MAPK) signaling pathways and its relationship to changes in intracellular calcium concentration ([Ca2+]i) induced by ATP in ROS-A 17/2.8 osteoblastic cells. ATP and UTP (10 μM) increased [Ca2+]i by cation release from intracellular stores. We have found that when the cells are subsequently subjected to mechanical stress (medium perturbation), a transient calcium influx occurs. This mechanical stress-activated calcium influx (MSACI) was not observed after ADP stimulation, indicating that P2Y2 receptor activation is required for MSACI. In addition, ERK 1/2 and p38 MAPK were activated by ATP in a dose- and time-dependent manner. This activation was almost completely blocked using neomycin (2.5 mM), an inhibitor of phosphoinositide-phospholipase C (PI-PLC), Ro 318220 (1 μM), a protein kinase C (PKC) inhibitor, and PP1 (50 μM), a potent and selective inhibitor of the Src-family tyrosine kinases. Ca2+-free extracellular medium (containing 0.5 mM EGTA) and the use of gadolinium (5 μM), which suppressed MSACI, prevented ERK 1/2 and p38 phosphorylation by ATP. Altogether, these results represent the first evidence to date suggesting that P2Y2 receptor stimulation by ATP in osteoblasts sensitizes mechanical stress activated calcium channels leading to calcium influx and a fast activation of the ERK 1/2 and p38 MAPK pathways. This effect also involves upstream mediators such as PI-PLC, PKC and Src family kinases.  相似文献   

9.
克隆的P2受体亚型的药理学研究进展   总被引:3,自引:0,他引:3  
张一红  赵志奇 《生命科学》2001,13(4):170-173,166
细胞外嘌呤(腺苷,ADP,ATP)及嘧啶(UDP,UTP)为重要的信使分子,通过细胞表面P2受体介导产生不同的生物效应,P2嘌吟受体的概念于1978年被提出,随后根据药理学特征又被分为P2X及P2X嘌呤受体,90年代,采用分子生物学手段,一系列配体门控的P2X受体及G蛋白耦联的P2Y受体被克隆及功能表达,迄今为止,已有七型P2X受体亚型(P2X1-7)及六型P2Y受体亚型被克隆(P2Y1,2,4,6,11,12),各型具有不同的分子结构,药理学特征及组织分布,本文还讨论了目前可用于区分各亚型激动剂及拮抗剂。  相似文献   

10.
Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5′-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration–response curve for proton upwards, with a 56.6?±?6.4 % increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5′-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons.  相似文献   

11.
Bone remodeling is a process of continuous resorption and formation/mineralization carried out by osteoclasts and osteoblasts, which, along with osteocytes, comprise the bone multicellular unit (BMU). A key component of the BMU is the bone remodeling compartment (BRC), isolated from the marrow by a canopy of osteoblast-like lining cells. Although much progress has been made regarding the cytokine-dependent and hormonal regulation of bone remodeling, less attention has been placed on the role of extracellular pH (pH(e)). Osteoclastic bone resorption occurs at acidic pH(e). Furthermore, osteoclasts can be regarded as epithelial-like cells, due to their polarized structure and ability to form a seal against bone, isolating the lacunar space. The major ecto-phosphatases of osteoclasts and osteoblasts, acid and alkaline phosphatases, both have ATPase activity with pH optima several units different from neutrality. Furthermore, osteoclasts and osteoblasts express plasma membrane purinergic P2 receptors that, upon activation by ATP, accelerate bone osteoclast resorption and impair osteoblast mineralization. We hypothesize that these ecto-phosphatases help regulate [ATP](e) and localized pH(e) at the sites of bone resorption and mineralization by pH-dependent ATP hydrolysis coupled with P2Y-dependent regulation of osteoclast and osteoblast function. Furthermore, osteoclast cellular HCO3(-), formed as a product of lacunar V-ATPase H(+) secretion, is secreted into the BRC, which could elevate BRC pH(e), in turn affecting osteoblast function. We will review the existing data addressing regulation of BRC pH(e), present a hypothesis regarding its regulation, and discuss the hypothesis in the context of the function of proteins that regulate pH(e).  相似文献   

12.
1. Extracellular ATP is recognized as a peripheral modulator of pain. Activation of ionotropic P2X receptors in sensory neurons has been implicated in induction of pain, whereas metabotropic P2Y receptors in potentiation of pain induced by chemical or physical stimuli via capsaicin sensitive TRPV1 channel. Here we report that P2Y2 receptor activation by ATP can activate the TRPV1 channel in absence of any other stimuli. 2. ATP-induced Ca2+ signaling was studied in Neuro2a cells. ATP evoked release of intracellular Ca2+ from ER and Ca2+ influx through a fast inactivating channel. The Ca2+ response was induced by P2Y receptor agonists in the order of potency ATP>or=UTP>or=ATPgammaS>ADP and was inhibited by suramin and PPADS. The P2X receptor agonist alpha beta methyl ATP was ineffective. 3. The Ca2+ influx was blocked by ruthenium red, an inhibitor of TRPV1 channel. Capsaicin, the most potent activator of the TRPV1 channel, evoked a fast inactivating Ca2+ transient suggesting the presence of endogenous TRPV1 channels in Neuro2a cells. NMS and PDBu, repressors of IP3 formation, drastically inhibited both the components of Ca2+ response. 4. Our data show co-activation of the P2Y2 receptor and capsaicin sensitive TRPV1 channel by ATP. Such functional interaction between endogenous P2Y2 receptor and TRPV1 channels could explain the ATP-induced pain.  相似文献   

13.
Extracellular UDP-glucose can activate the purinergic P2Y14 receptor. The aim of the present study was to examine the physiological importance of P2Y14 receptors in the vasculature. The data presented herein show that UDP-glucose causes contraction in mouse coronary and basilar arteries. The EC50 values and immunohistochemistry illustrated the strongest P2Y14 receptor expression in the basilar artery. In the presence of pertussis toxin, UDP-glucose inhibited contraction in coronary arteries and in the basilar artery it surprisingly caused relaxation. After organ culture of the coronary artery, the EC50 value decreased and an increased staining for the P2Y14 receptor was observed, showing receptor plasticity.  相似文献   

14.
Glial cells in the peripheral nervous system, such as Schwann cells, respond to nucleotides, which play an important role in axonal regeneration and myelination. Metabotropic P2Y receptor agonists are promising therapeutic molecules for peripheral neuropathies. Nevertheless, the proteomic mechanisms involved in nucleotide action on Schwann cells remain unknown. Here, we studied intracellular protein changes in RT4-D6P2T Schwann cells after treatment with nucleotides and Nucleo CMP Forte (CMPF), a nucleotide-based drug. After treatment with CMPF, 2-D DIGE revealed 11 differential gel spots, which were all upregulated. Among these, six different proteins were identified by MS. Some of these proteins are involved in actin remodelling (actin-related protein, Arp3), membrane vesicle transport (Rab GDP dissociation inhibitor β, Rab GDI), and the endoplasmic reticulum stress response (protein disulfide isomerase A3, PDI), which are hallmarks of a possible P2Y receptor signalling pathway. Expression of P2Y receptors in RT4-D6P2T cells was demonstrated by RT-PCR and a transient elevation of intracellular calcium measured in response to UTP. Actin reorganisation was visualized after UTP treatment using phalloidin-FITC staining and was blocked by the P2Y antagonist suramin, which also inhibited Arp3, Rab GDI, and PDI protein upregulation. Our data indicate that extracellular UTP interacts with Schwann P2Y receptors and activates molecular machinery that induces changes in the glial cell cytoskeleton.  相似文献   

15.
The purinergic receptor P2Y, G protein coupled, 14 (P2Y14) receptor for UDP-glucose and other UDP-sugars has been implicated in the regulation of the stem cell compartment as well as neuroimmune function. However, the role of P2Y14 in osteoclast formation is completely unknown. We found that RANKL selectively induced P2Y14 among seven mammalian P2Y receptors when analysed at both the mRNA and protein level, but inhibitors of the mitogenactivated protein (MAP) kinase pathway suppressed induction of P2Y14 proteins. Extracellular addition of UDP-sugars such as UDP-glucose, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetyl glucosamine promoted RANKL-induced osteoclastogenesis, while P2Y14 downregulation by RNA interference inhibited osteoclast formation. Taken together, these results suggest that P2Y14 may act as the receptor for UDP-sugars in osteoclast precusors and may regulate RANKL-induced osteoclastogenesis.  相似文献   

16.
Cellular injury induces a complex series of events that involves Ca2+ signaling, cell communication, and migration. One of the first responses following mechanical injury is the propagation of a Ca2+ wave (Klepeis et al. [2001] J Cell Sci 114(Pt 23):4185-4195). The wave is generated by the extracellular release of ATP, which also induces phosphorylation of ERK (Yang et al. [2004] J Cell Biochem 91(5):938-950). ATP and other nucleotides, which bind to and activate specific purinergic receptors were used to mimic injury. Our goal was to determine which of the P2Y purinergic receptors are expressed and stimulated in corneal epithelial cells and which signaling pathways are activated leading to changes in cell migration, an event critical for wound closure. In this study, we demonstrated that the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were present in corneal epithelial cells. A potency profile was determined by Ca2+ imaging for nucleotide agonists as follows: ATP > or = UTP > ADP > or = UDP. In contrast, negligible responses were seen for beta,gamma-meATP, a general P2X receptor agonist and adenosine, a P1 receptor agonist. Homologous desensitization of the Ca2+ response was observed for the four nucleotides. However, P2Y receptor internalization and degradation was not detected following stimulation with ATP, which is in contrast to EGFR internalization observed in response to EGF. ATP induced cell migration was comparable to that of EGF and was maximal at 1 microM. Cells exposed to ATP, UTP, ADP, and UDP demonstrated a rapid twofold increase in phosphorylation of paxillin at Y31 and Y118, however, there was no activation elicited by beta,gamma-meATP or adenosine. Additional studies demonstrated that wound closure was inhibited by reactive blue 2. These results indicate that P2Y receptors play a critical role in the injury repair process.  相似文献   

17.
18.
Summary 1. In pheochromocytoma PC12 cells ATP and, to a lesser extent, 2-methylthioATP stimulate phosphoinositide breakdown, release of intracellular calcium, and influx of external calcium, leading to stimulation of norepinephrine release. In contrast, although UTP also stimulates phosphoinositide breakdown, release of intracellular calcium, and influx of external calcium, there is no stimulation of norepinephrine release.2. 2-MethylthioATP, presumably acting at P2y receptors, and UTP, presumably acting at P2u receptors, in combination elicit a phosphoinositide breakdown greater than that elicited by either alone. Intracellular levels of calcium measured with Fura-2 increase to greater levels with ATP than with UTP and are sustained, while the UTP intracellular levels of calcium rapidly return to basal values. Both ATP and UTP cause a similar influx of45 Ca2+ presumably by stimulation of a P2 receptor directly linked to a cation channel.3. It is proposed that PC12 cells contain two distinct G protein-coupled P2 receptors that activate phospholipase C and a P2 receptor linked to a cation channel. The P2y receptor sensitive to ATP (and to 2-methylthioATP) causes the depletion of a pool of intracellular calcium, sufficient to activate so-called receptor-operated calcium entry. The sustained elevation of intracellular calcium after ATP treatment is proposed to result in stimulation of norepinephrine release and activation of calcium-dependent potassium channels and sodium-calcium exchange pathways.4. The P2u receptor sensitive to UTP (and to ATP) causes only a transient elevation in levels of intracellular calcium, perhaps from a different pool, insufficient to activate so-called receptor-operated calcium entry. Further sequelae do not ensue, and the functional role of the UTP-sensitive P2u receptor is unknown.  相似文献   

19.
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

20.
Mast cell degranulation affects many conditions, e.g., asthma and urticaria. We explored the potential role of the P2Y14 receptor (P2Y14R) and other P2Y subtypes in degranulation of human LAD2 mast cells. All eight P2YRs were expressed at variable levels in LAD2 cells (quantitative real-time RT-PCR). Gene expression levels of ADP receptors, P2Y1R, P2Y12R, and P2Y13R, were similar, and P2Y11R and P2Y4R were highly expressed at 5.8- and 3.8-fold of P2Y1R, respectively. Least expressed P2Y2R was 40-fold lower than P2Y1R, and P2Y6R and P2Y14R were ≤50 % of P2Y1R. None of the native P2YR agonists alone induced β-hexosaminidase (β-Hex) release, but some nucleotides significantly enhanced β-Hex release induced by C3a or antigen, with a rank efficacy order of ATP > UDPG ≥ ADP >> UDP, UTP. Although P2Y11R and P2Y4R are highly expressed, they did not seem to play a major role in degranulation as neither P2Y4R agonist UTP nor P2Y11R agonists ATPγS and NF546 had a substantial effect. P2Y1R-selective agonist MRS2365 enhanced degranulation, but ~1,000-fold weaker compared to its P2Y1R potency, and the effect of P2Y6R agonist 3-phenacyl-UDP was negligible. The enhancement by ADP and ATP appears mediated via multiple receptors. Both UDPG and a synthetic agonist of the P2Y14R, MRS2690, enhanced C3a-induced β-Hex release, which was inhibited by a P2Y14R antagonist, specific P2Y14R siRNA and pertussis toxin, suggesting a role of P2Y14R activation in promoting human mast cell degranulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号