首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The activities of several enzymes related to amino acid metabolism were investigated in senescing detached wheat leaves ( Triticum aestivum L. cv. Diplomat) in light and darkness and after kinetin treatment. Glutamine synthetase and glutamate synthase activities rapidly declined in darkness. In light, the decline of glutamate synthase activity was retarded, while the activity of glutamine synthetase remained high and even increased transitorily. Kinetin treatment counteracted the decline of the activities of both enzymes. The activity of glutamate dehydrogenase markedly increased during senescence, particularly in light, and kinetin treatment lowered its activity. The activities of glutamate-oxaloacetate and glutamate-pyruvate amino-transferases and of NADP-dependent isocitrate dehydrogenase also increased in detached wheat leaves in light. Kinetin treatment prevented the rise of these enzyme activities. In darkness, the activities of glutamate-oxaloacetate aminotransferase and NADP-dependent isocitrate dehydrogenase decreased slowly while the decline of glutamate-pyruvate aminotransferase activity was more rapid. The activity of NAD-dependent malate dehydrogenase decreased both in light and, more rapidly, in darkness. The pattern of changes of the enzyme activities provides an explanation for the amino acid transformations and the flow of amino nitrogen into transport metabolites in senescing leaves.  相似文献   

2.
This work reports changes in sucrose synthase and invertase activities throughout endosperm development in wheat, together with the associated substrates and metabolites, sucrose, UDP, glucose, fructose and UDP-glucose. Throughout endosperm development, sucrose synthase had consistently higher activity than invertase and indeed invertase activity did not change appreciably. The observed variation in pattern and amounts of glucose and fructose present during the mid- and late stages of endosperm development confirmed the suggestion that invertase was not the preferred pathway of sucrose catabolism. Kinetic parameters for sucrose synthase were determined in crude extracts. Estimates of UDP and sucrose concentrations suggest that sucrose synthase is unlikely to achieve its potential maximum velocity. This limitation may however be overcome in part by the apparent excess catalytic activity measured during endosperm development.  相似文献   

3.
A crucial function of antioxidative enzymes is to remove excess reactive oxygen species (ROS), which can be toxic to plant cells. The effect of Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), infestation on the activities of antioxidative enzymes was investigated in the resistant (cv. Tugela DN) and the near-isogenic susceptible (cv. Tugela) wheat (Triticum aestivum L.). RWA infestation significantly induced the activity of superoxide dismutase, glutathione reductase and ascorbate peroxidase to higher levels in the resistant than in susceptible plants. These findings suggest the involvement of antioxidative enzymes in the RWA-wheat resistance response, which was accompanied by an early oxidative burst. The results are consistent with the role of ROS in the resistance response and the control of their levels to minimise toxic effects.  相似文献   

4.
Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate puruvate transaminase and glutamate oxaloacetate transaminase have been assayed in developing testa-pericarp and endosperm of two wheat varieties, namely Shera (11.6% protein) and C-306 (9.8% protein). On per organ basis, activities of all the enzymes studied, except glutamine synthetase, increased during development. Glutamine synthetase activity decreased during development in the testa-pericarp, whereas, no glutamine synthetase activity could be detected in endosperm of either variety at any stage of development. Compared to testa-pericarp, endosperm had higher activities of glutamate synthase and glutamate pyruvate transaminase. On the whole, enzyme activities in Shera were higher, as compared to C-306. Developmental patterns and relative levels of enzyme activities in the two varieties were more or less the same, when expressed on dry weight basis or as specific activities. The results suggest that ammonia assimilation in developing wheat grain takes place by the glutamate dehydrogenase pathway in the endosperm; and both by the glutamate dehydrogenase and glutamine synthetase—glutamate synthase pathways in the testa-pericarp.  相似文献   

5.
Five hundred hydroxyproline-resistant cell lines were selected from cell cultures of wheat ( Triticum aestivum L. cv. Koga II) after plating on 10 to 30 m M hydroxyproline (Hyp) containing solid Gamborg B 5 medium. All selected cell lines from 30 m M Hyp-medium contained increased (up to 17-fold) levels of free proline. Seventy-four cell lines were transferred to Hyp-free medium and subcultivated 25 times, for 12 months altogether, after which 80% still had increased proline levels. Fourteen cell lines with increased proline levels were further investigated in liquid media with regard to their frost tolerance, which was measured by means of electrolyte leakage. Ten of them showed increased fros tolerance, with LT 50 values as low as 2.7°C below that of the wild type (-4.7°C). Besides increased proline levels and increased percentage dry weight, the Hyp-resistant cell lines had lower osmotic potentials. Osmotic potentials correlated better than levels of free proline with the increase in frost tolerance.  相似文献   

6.
Several parameters of amino acid metabolism were studied in detached primary leaves of wheat (Triticum aestivum L. cv. Castell) during a 14 day incubation period in the dark. Protein loss was accompanied by a 5-fold increase in the total amount of free amino acids during the first 4 days of the incubation period with asparagine being the most important. Beyond this stage a pronounced intracellular accumulation of ammonium occured. A gradual decrease in the levels of free amino acids and ammonium at the later stages of senescence could in part be accounted for by leakage from the leaves. Additionally, some nitrogen was lost due to ammonia volatilization. The rapid decay of the glutamine synthetase (GS; EC 6.3.1.2)-glutamate synthase (Fd-GOGAT; EC 1.4.7.1) system and the fast decline of glutamate-pyruvate transaminase (GPT; EC 2.6.1.2) activity appear to be predominant features of senescence in the dark. Decreasing Fd-GOGAT activity was slightly compensated by a small and temporary increase in the activity of NADH-GOGAT (EC 1.4.1.14). Glutamateoxalocetate transaminase (GOT: EC 2.6.1.1) activity, although declining continuously, proved to be much more persistent. Changes in glutamate dehydrogenase (GDH; EC 1.4.1.3) activity closely resembled the profile of ammonium evolution in the leaves and NADP-isocitrate dehydrogenase (IDH; EC 1.1.1.42) activity revealed a temporary maximum during the period of rapid increase in GDH activity. Increased activity of GDH could also be induced by exogenous ammonium. Ammonium accumulation could, at least partly, be caused by increased asparaginase (EC 3.5.1.1) activity which accompanied the rapid conversion of asparagine to aspartic acid. Asparagine aminotransferase (EC 2.6.1.14) activity declined sharply from the beginning of the senescence period. Although the activity profile of glutaminase (EC 3.5.1.2) was similar to that of asparaginase, glutamine was of little importance quantitatively and an analogous relationship between glutamine and glutamic acid could not be detected.  相似文献   

7.
Allelopathy in wheat (Triticum aestivum)   总被引:1,自引:0,他引:1  
Wheat (Triticum aestivum) allelopathy has potential for the management of weeds, pests and diseases. Both wheat residue allelopathy and wheat seedling allelopathy can be exploited for managing weeds, including resistant biotypes. Wheat varieties differ in allelopathic potential against weeds, indicating that selection of allelopathic varieties might be a useful strategy in integrated weed management. Several categories of allelochemicals for wheat allelopathy have been identified, namely, phenolic acids, hydroxamic acids and short‐chain fatty acids. Wheat allelopathic activity is genetically controlled and a multigenic model has been proposed. Research is underway to identify genetic markers associated with wheat allelopathy. Once allelopathic genes have been located, a breeding programme could be initiated to transfer the genes into modern varieties for weed suppression. The negative impacts of wheat autotoxicity on agricultural production systems have also been identified when wheat straws are retained on the soil surface for conservation farming purposes. A management package to avoid such deleterious effects is discussed. Wheat allelopathy requires further study in order to maximise its allelopathic potential for the control of weeds, pests and diseases, and to minimise its detrimental effects on the growth of wheat and other crops.  相似文献   

8.
低磷和干旱胁迫对小麦生长发育影响的研究初探   总被引:4,自引:1,他引:4  
研究了低磷和干旱胁迫对小麦(Triticum aestivum L.)生长发育的影响。结果表明,低磷胁迫能显著降低小麦的分蘖数、叶片相对含水量和叶绿素含量,进而抑制小麦的生长发育,降低其生物产量和经济产量,不耐低磷品种中国春受影响的程度要大于耐低磷品种烟中144。在相同条件下,干旱能够强化磷胁迫效应,表现出明显的胁迫叠加现象。  相似文献   

9.
Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots   总被引:4,自引:0,他引:4  
We investigated the relation between the toxic effect of aluminum (Al) on root growth and the lignin deposition in wheat ( Triticum aestivum L. cvs Atlas 66 and Scout 66). In the Al-tolerant cultivar Atlas 66, control treatment without AlCl3 at pH 4.75, cell length increased dramatically in the portion of the root that was 0.6 to 3.2 mm from the root cap junction (approximately 1.0 to 3.6 mm from the root tip). However, treatment with 20 μ M AlCl3 for 24 and 48 h completely inhibited root elongation and markedly decreased the length and increased the diameter of the cells in the same portion of the root. Moreover, marked deposition of lignin was observed in the cells that corresponded to the portion 1.5 to 4.5 mm from the root tip in Atlas 66 roots treated with 20 μ M AlCl3, while no deposition of lignin was detected in control roots. Treatment with 5 μ M AlCl3 slightly inhibited root growth and there was no deposition of lignin in the root. On the other hand, in roots of the Al-sensitive cultivar Scout 66, treatment with 5 μ M AlCl3 completely inhibited root growth and markedly induced deposition of lignin. These results suggest that lignification in the elongating region coincided with the extent of inhibition of root growth by Al in two wheat cultivars that differed in their sensitivity to Al.  相似文献   

10.
In winter wheat, the tubulin and 60 kDa-phosphorylated proteins/actin ratio is considerably higher in the roots than in the leaves. Differences in the content of the main cytoskeletal proteins were also found in the leaves of the different cultivars. It is suggested that the lower amount of the tubulin and 60 kDa-phosphorylated proteins and higher content of actin determine the greater tubulin cytoskeletal stability in the leaves and their higher frost resistance, as compared with the roots. Also, it is possible that the higher content of the tubulin and 60 kDa-phosphorylated proteins defines the lower microtubule (MT) stability in the leaves of the low frost resistant cultivar than in the leaves of the more frost resistant ones. In the roots and leaves of the low frost resistant cultivar, the low stability of the numerous tubulin structures is apparently one reason for the abscisic acid (ABA)-induced reduction of the cytoskeletal and 60 kDa-phosphorylated proteins in the cells. The cold acclimation compensated the ABA effect in the roots of the very frost resistant cultivar in the most extent. This suggests the existence of the different pathways in the increased plant cell frost resistance through the action of ABA and low temperature.  相似文献   

11.
Seasonal changes in glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), and glutamate dehydrogenase (EC 1.4.1.3) were measured in both senescing leaf and bark tissues of ‘Golden Delicious’ apple trees (Malus domestica Borkh.). From the measured enzyme activities we attempted to estimate the in vivo catalytic potentials of the enzymes with special reference to nitrogen mobilization and conservation of senescing apple trees. The cumulative glutamine synthetase activity of leaf tissue was about three times higher than that of bark. The estimated catalytic potential of leaf glutamine synthetase was 800-fold higher than the actual protein nitrogen loss of senescing leaves. The cumulative glutamate synthase activity of bark was about six times higher than that of leaf. The estimated catalytic potential of bark glutamate synthase was 160-times higher than the actual protein nitrogen gain in that tissue. The cumulative glutamate dehydrogenase activities in leaf and bark tissue were approximately the same. However, the catalytic potential of leaf glutamate dehydrogenase was twice that of leaf glutamate synthase. It is thus concluded that the physiological role of glutamine synthetase in senescing leaf tissue is to furnish the amide(s) prior to mobilization of nitrogen to storage tissue. The higher activity of glutamate synthase in bark tissue could provide a mechanism to transform the imported amide nitrogen to amino nitrogen of glutamate for storage protein synthesis. The possible regulatory factors upon the activity of these enzymes in the tissues of senescing apple trees are discussed.  相似文献   

12.
Bustos DM  Iglesias AA 《FEBS letters》2002,530(1-3):169-173
In wheat, non-phosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) was found to be encoded by one gene giving rise to a single protein. However, Western blots revealed two different subunits of about 58 and 60 kDa in endosperm and shoots. The latter was attributed to in vivo phosphorylation of shoot GAPN. No modification occurred in leaves, where the enzyme is composed by a single 58 kDa polypeptide. GAPN partially purified from shoots and endosperm was dephosphorylated in vitro with alkaline phosphatase. Phosphorylated GAPN exhibited similar affinity for substrates but a lower Vmax compared to the non-phosphorylated enzyme. Results suggest that reversible phosphorylation of GAPN could regulate NADPH production in the cytosol of heterotrophic plant cells.  相似文献   

13.
Nitrogen accumulation in the ear of wheat plants ( Triticum aestivum L. cv. Klein Chamaco) during ear growth was studied under 4 experimental conditions. Plants were grown in pots with Perlite or soil, and fertilized with nutrient solutions. In one experiment the plants were grown in a greenhouse and supplied with high (16m M ) or low (1.6 m M ) N in the nutrient solutions until anthesis, and then with or without nitrogen supply until ripening. In a second experiment the plants were grown with high N supply until anthesis, and then for half of the plants light intensity was decreased by 50%, and at the same time. N supply was terminated for half of the plants within each light treatment. A third experiment was similar to the previous one, but was carried out in a growth cabinet under 20% of the maximal irradiance in the greenhouse. In a fourth experiment half the ear was excised at anthesis in half of the plants, and these plants were then supplied with or without nitrogen.
In all experiments there was a linear relation between the rate of N accumulation and the rate of ear growth. A wide range of final individual grain weights and N concentration was observed among the experiments. The same maximum N concentration was observed for all grain sizes, although the N concentration could be different between grains of the same size. The grain N concentration correlated with the rate of N accumulation per unit of ear weight increase during ear growth. It is suggested that in wheat plants there is a dependence of nitrogen transport on carbon transport to the ear, and to the ear, and that the final grain N concentration is determined by the N/C ratio exported from the vegetative tissues.  相似文献   

14.
谷艳芳    丁圣彦    陈海生    高志英  邢倩 《生态学报》2008,28(6):2690-2690~2697
2006年于冬小麦(Triticum aestivum)孕穗期、开花期和灌浆期,采用ASD Fieldspec HH光谱仪测定了不同水分胁迫下冬小麦高光谱反射率、红边参数和对应的冬小麦生理生态参数叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素a b(Chla b),叶片水分含量(LWC),叶面积指数(LAI).结果表明,冬小麦生理生态参数随生长发育呈现先上升后下降趋势,Chla、Chlb和Chla b开花期达最大值;LWC和LAI孕穗期达最大值.随干旱胁迫程度增加,Chla、Chlb和Chla b、LWC和LAI减少.不同水分处理下冬小麦高光谱反射率具有绿色植物特征.用红边一阶微分光谱特征参数分析,冬小麦孕穗期和开花期红边(λred)位于728~730nm,灌浆期红边(λred)移到734nm.Chla、Chlb和Chla b与Dλ730:Dλ702、Dλ730:Dλ718,LWC与Dλred、Dλ718以及LAI与Dλ718、Dλred、Sred均呈正相关,相关系数大于0.5(p<0.05).经回归分析,Chl与Dλ730:Dλ702、LWC与Dλred呈线性关系(R2=0.87),LAI与Sred呈二次关系(R2=0.68).因此,用冬小麦高光谱特征及红边参数能判断冬小麦生育后期长势和农田水分胁迫程度.  相似文献   

15.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

16.
Gibberellins A1, A3, A4 and A7 were identified by combined gas chromatography mass spectrometry (GC-MS) in leaf and stem tissues of 17-day-old seedlings of wheat ( Triticum aestivum L. ), cvs Siete Cerros (semi-dwarf, Rht1) and Møystad (tall), of F1, hybrids from the cross Møystad × Siete Cerros and of 2 selected lines from the cross Møystad x Sonora 64 (Rht1 and Rht2). GA, and GA, were identified by full scan mass spectra separately in all 5 extracts, GA4 and GA7, were identified by selected ion monitoring in a bulked fraction. About 90% of the biological activity (Tan-ginbozu dwarf rice bioassay) in all 5 extracts was due to the GA1/GA3-fraction.  相似文献   

17.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

18.
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) were used to analyse changes in the physical state of water in wheat crowns during cold acclimation and during the freezing/thawing cycle. Spectroscopically measured average spin-spin relaxation times (T2) decreased during cold acclimation and increased when plants were grown at normal temperature. Spin-spin relaxation images whose contrast is proportional to T2, times were calculated allowing association of water relaxation with regions of tissue in spin-echo images during acclimation and freezing. Images taken during freezing revealed nonuniform freezing of tissue in crowns and roots. Acclimated and non-acclimated wheat crowns were imaged during freezing and after thawing. Spin-echo image signal intensity and T2 times decreased dramatically between -4°C and -8°C as a result of a decrease in water mobility during freezing. Images collected during thawing were diffuse with less structure and relaxation times were longer, consistent with water redistribution in tissue after membrane damage.  相似文献   

19.
Distribution of gluten proteins in bread wheat (Triticum aestivum) grain   总被引:1,自引:0,他引:1  

Background and Aims

Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality.

Methods

Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers.

Key Results

Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain.

Conclusions

Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号