首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete nucleotide sequence of infectious cloned DNA components (A and B) of the causal agent of squash leaf curl disease in the Philippines was determined. DNA‐A and DNA‐B comprise 2739 and 2705 nucleotides, respectively; the common region is 174 bases in length. Five ORFs were found in DNA‐A and two in DNA‐B. Partial dimeric clones containing DNA‐A and DNA‐B, constructed in a binary vector and transformed into Agrobacterium tumefaciens, induced systemic infection in agro‐inoculated pumpkin plants (Cucurbita moschata). The total DNA‐A sequence was most closely related to that of Squash leaf curl China virus (SLCCNV) (88% identity), although the existence of B component of SLCCNV has not been reported. The deduced coat protein was like that of SLCCNV (98% amino acid sequence identity) and the Philippines virus has low sequence identity to Squash leaf curl virus (SLCV) and Squash mild leaf curl virus (SMLCV) (63 and 64% total nucleotide sequence identities, respectively). From these results, we propose that the Philippines virus be designated Squash leaf curl China virus‐[Philippines] (SLCCNV‐[PH]).  相似文献   

2.
R. Singh    S. K. Raj    V. Prasad 《Journal of Phytopathology》2008,156(4):222-228
A Begomovirus causing yellow vein mosaic disease of pumpkin (Cucurbita maxima L.) was characterized at molecular level by cloning and sequence analysis of its complete DNA‐A genome. The DNA‐A of the isolate contains 2758 nucleotides which encode six open reading frames (ORFs): AV1 and AV2 in the virion‐sense and AC1, AC2, AC3 and AC4 in the complementary‐sense. Based on the highest (96%) sequence identities and close phylogenetic relationships with Squash leaf curl China virus species, the Begomovirus was identified as strain of Squash leaf curl China virus. The presence of DNA‐B genome of the virus strain was also detected by dot blot hybridization test using DNA‐B specific probe.  相似文献   

3.
Yellow vein mosaic disease of pumpkin (Cucurbita moschata) is a serious problem for the cultivation of pumpkin throughout India. Symptomatic samples collected from Varanasi region of North India showed mixed infection of the three begomoviruses which could represent up to three species namely Tomato leaf curl New Delhi virus, Squash leaf curl China virus and Tomato leaf curl Palampur virus.  相似文献   

4.
The disease caused by Tomato leaf curl New Delhi virus (ToLCNDV), which is naturally transmitted by the whitefly Bemisia tabaci, causes important economic losses in cucurbit crops. The availability of simple and efficient inoculation protocols and detection methods is necessary for screening varieties and germplasm collections as well as for breeding populations. We evaluated the infectivity of ToLCNDV inocula prepared using three different buffers for mechanical sap inoculation in a susceptible variety of zucchini. We found that inoculum prepared with buffer III, which contains polyvinylpyrrolidone, is highly efficient for mechanical inoculation, with 100% of plants displaying severe symptoms 21 days post‐inoculation. Using this buffer, we mechanically inoculated 19 commercial varieties of cucurbit crops (six of cucumber, six of melon and seven of zucchini), evaluated the evolution of symptoms and diagnosed infection using nine different ToLCNDV detection methods (four based on serology, four based on molecular hybridization and one based on PCR detection). The results revealed that all varieties are susceptible, although cucumber varieties display less severe symptoms than those of melon or zucchini. All detection methods were highly efficient (more than 85% of plants testing positive) in melon and zucchini, but in cucumber, the percentage of positive plants detected with serology and molecular hybridization methods ranged from 20.4% with Squash leaf curl virus (SLCV) antiserum, to 78.5% with DNA extract hybridization. Overall, the best detection results were obtained with PCR, with 92.6%, 92.4% and 98.4% cucumber, melon and zucchini plants, respectively, testing positive. When considering the overall results in the three crops, the best serology and molecular hybridization methods were those using Watermelon chlorotic stunt virus (WmCSV) antiserum and DNA extract, respectively. The inoculation methodology developed and the information on detection methods are of great relevance for the selection and breeding of varieties of cucurbit crops that are tolerant or resistant to ToLCNDV.  相似文献   

5.
We report that several begomoviruses are associated with tomato leaf curl disease in Java, Indonesia. Tomato plants with leaf curl symptoms were collected from Bandung (west Java), Purwokerto (central Java), Magelang (central Java) and Malang (east Java) of Indonesia, the major tomato‐growing areas of the country. Viruses were detected using the polymerase chain reaction (PCR), with universal primers for the genus Begomovirus. PCR‐amplified fragments were cloned and sequenced. Based on sequence comparisons and phylogenetic analyses, the viruses were divided into three groups. With respect to amino acid (aa) identities of the N‐terminal halves of the coat proteins compared in this study, group I was most closely related to Ageratum yellow vein virus (AYVV) (97%), Ageratum yellow vein China virus‐[Hn2] (AYVCNV‐[Hn2]) (96%) and Ageratum yellow vein virus‐[Taiwan] (AYVV‐[Tai]) (95%), and ageratum‐infecting begomovirus from Java (99%). Group II had high sequence identity with a tentative species of tomato leaf curl Java virus (ToLCJAV) (96% aa) for the CP. Group III was most closely related to a proposed species of Pepper yellow leaf curl Indonesia virus (PepYLCIDV) (90% aa identity) by its partial CP sequence.  相似文献   

6.
An epidemic outbreak of severe yellow leaf curl disease was reported in field grown tomato within Zhejiang Province of China in the autumn–winter cropping season of 2006. A molecular diagnostic survey was carried out based on comparisons of partial and complete viral DNA sequences. Comparison of partial DNA‐A sequences amplified with degenerate primers specific for begomoviruses confirmed the presence of two types of begomoviruses. The complete DNA sequences of five isolates, corresponding to the two types, were determined. Sequence comparisons and phylogenetic analysis revealed that they correspond to two previously identified begomoviruses, Tomato yellow leaf curl virus and Tomato leaf curl Taiwan virus. The satellite DNAβ molecule was not detected in these samples by either PCR or Southern blot hybridization analysis. There has been no previous report of geminivirus disease incidence in Zhejiang Province, indicating that the introduction of these two tomato infecting geminiviruses into the agro‐ecological zone of South‐eastern China is a fairly recent event. The implications for disease control are discussed.  相似文献   

7.
Epidemics of whitefly‐transmitted Tomato chlorosis virus, Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus have been present in the south east of Spain since the 1990s. A survey was performed in 40 greenhouses and nethouses during 2003 to establish the relationship between the disease incidence and the quality of greenhouse or nethouse coverings, providing a physical protection of crops against whiteflies. For tomato chlorosis virus disease (ToCD), the incidence correlated with the type of greenhouse cover and was most reduced under higher quality covers. Control of tomato yellow leaf curl disease (TYLCD) was achieved only for crops grown in the highest quality greenhouses. TYLCD incidence in tolerant tomatoes remained below 100% within the 5 months of sampling, despite the disease progress rate at the initial stage of the cultivation being higher than that of ToCD, which did reach 100% incidence in many greenhouses. Linear regression analysis showed that the development of ToCD and TYLCD in most of the greenhouses was best described by the monomolecular model and the Gompertz model, respectively. Tomato infectious chlorosis virus was not detected in parallel surveys carried out during this study, although it has been described previously in the area studied.  相似文献   

8.
Severe incidence of a mosaic disease was observed on summer squash (Cucurbita pepo), commonly called pepo, grown in Varanasi during June–September of Khariff season 2007. Symptoms observed were mosaic, puckering on the leaves, wartiness on fruits, general stunting of plants and low yield. PCR amplification with degenerate primers designed to target the conserved sequences of coat protein gene of whitefly transmitted geminiviruses showed ~800 bp fragment in all symptomatic samples tested, indicating the association of a geminivirus with the disease. Nucleotide sequence analysis of the amplified fragment showed 99% identity with pumpkin isolate of squash leaf curl china virus (SLCCNV) from Lucknow. It showed 85–96.7% homology with other isolates of SLCCNV from India and abroad. Phylogenetic analysis revealed the isolate on pepo from Varanasi clustered with SLCCNV isolates on pumpkin from Lucknow and Coimbatore.  相似文献   

9.
Tomato yellow leaf curl virus (TYLCV) was recently divided into two different species: Tomato yellow leaf curl virus‐Israel (TYLCV‐Is) and Tomato yellow leaf curl virus‐Sardinia (TYLCV‐Sar). There are no rapid methods by which TYLCV viruses may be assigned to either TYLCV‐Is or TYLCV‐Sar species. In the present work, using an extensive alignment of begomovirus sequences, TYLCV‐specific primers were designed and tested which allow the specific amplification of DNA fragments from any isolate of TYLCV. Also, a primer was designed and tested which allows the specific amplification of TYLCV‐Sar. Furthermore, a combination of these primers was selected to develop a duplex PCR method, which has the potential to detect either TYLCV‐Is or TYLCV‐Sar. The PCR methods were also highly effective with minimal sample preparation and allowed direct amplification of TYLCV from infected leaf extracts. This approach may be used in the laboratory as a tool for rapid, large‐scale diagnostics of TYLCV‐infected samples.  相似文献   

10.
The genome components of the Melon chlorotic leaf curl virus (MCLCuV) were cloned from symptomatic cantaloupe leaves collected in Guatemala during 2002. The MCLCuV DNA-A and DNA-B components shared their closest nucleotide identities among begomoviruses, at ~90 and 81%, respectively, with a papaya isolate of MCLCuV from Costa Rica. The closest relatives at the species level were other members of the Squash leaf curl virus (SLCV) clade, which is endemic in the southwestern United States and Mexico. Biolistic inoculation of cantaloupe seedlings with the MCLCuV DNA-A and -B components resulted in the development of characteristic disease symptoms, providing definitive evidence of causality. MCLCuV experimentally infected species within the Cucurbitaceae, Fabaceae, and Solanaceae. The potential for interspecific reassortment was examined for MCLCuV and its closest relatives, including the bean-restricted Bean calico mosaic virus (BCaMV), and three other cucurbit-infecting species, Cucurbit leaf crumple virus (CuLCrV), SLCV, and SMLCV. The cucurbit viruses have distinct but overlapping host ranges. All possible reassortants were established using heterologous combinations of the DNA-A or DNA-B components. Surprisingly, only certain reassortants arising from MCLCuV and BCaMV, or MCLCuV and CuLCrV, were viable in bean, even though it is a host of all of the “wild-type” (parent) viruses. The bean-restricted BCaMV was differentially assisted in systemically infecting the cucurbit test species by the components of the four cucurbit-adapted begomoviruses. In certain heterologous combinations, the BCaMV DNA-A or -B component was able to infect one or more cucurbit species. Generally, the reassortants were less virulent in the test hosts than the respective wild-type (parent) viruses, strongly implicating adaptive modulation of virulence. This is the first illustration of reassortment resulting in the host range expansion of a host-restricted begomovirus.  相似文献   

11.
Virus isolate G35 was obtained from Euphorbia pulcherrima showing leaf curl and vein thickening symptoms in Tianyang, Guangxi Province, China. The virus was transmitted by whiteflies to Nicotiana tabacum, Lycopersicon esculentum, Datura stramonium and E. pulcherrima. DNA‐A contains 2746 nucleotides, with two open reading frames (ORFs) in the virion‐sense DNA and four ORFs in the complementary‐sense DNA. When compared with the DNA‐A sequence of other begomoviruses, the total DNA‐A of isolate G35 was most closely related to that of Ageratum enation virus (79.9% sequence identity). However, the deduced coat protein of G35 is most like that of Pepper leaf curl virus from Bangladesh (94.9% amino acid sequence identity), and the AC1 of G35 is most like that of Cotton leaf curl Multan virus‐Okra (87.2% amino acid sequence identity). The molecular data showed that G35 is a distinct Begomovirus species, for which the name Euphorbia leaf curl virus (ELCV) is proposed.  相似文献   

12.
Begomoviruses cause a number of serious diseases of cultivated crops and are considered as the major constraint for the cultivation of several crops all over the world. During a survey in the years 2007 and 2008, the typical symptoms of Begomovirus (yellow mosaic and yellow vein) were observed on six cucurbitaceous crops, viz. bitter gourd (Momordica charantia L.), pointed gourd (Trichosanthes dioica), pumpkin (Cucurbita pepo), pumpkin (Cucurbita maxima), sponge gourd (Luffa cylindrica) and ridged gourd (Luffa acutangula) being cultivated in northern India. Begomovirus infection was suspected due to significant infestation of whiteflies (Bemisia tabaci, the known vector of Begomoviruses) on these species. The presence of Begomovirus was detected from the total DNA extracted from six infected leaf samples of these species by polymerase chain reaction using the specific primers of a well-characterised Begomovirus. The ~800 bp amplicons of these isolates were cloned, sequenced and the data obtained were compared with each other and with sequence database available in GenBank for best sequence identities and phylogenetic relationships. Based on highest 97–99% sequence identities and closest phylogenetic relationships, four representative Begomovirus species were identified as Ageratum enation virus (from T. dioica), Squash leaf curl China virus (from C. maxima), Tomato leaf curl New Delhi virus (from M. charantia, L. cylindrica and L. acutangula) and Tomato leaf curl Palampur virus (from C. pepo). These results suggested the existence of a high genetic diversity among Begomoviruses infecting cucurbitaceous crops.  相似文献   

13.
Tomato yellow leaf curl disease (TYLCD) is one of the most devastating viral diseases affecting tomato crops in tropical, subtropical and temperate regions of the world. Here, we focus on the interactions through recombination between the different begomovirus species causing TYLCD, provide an overview of the interactions with the cellular genes involved in viral replication, and highlight recent progress on the relationships between these viruses and their vector, the whitefly Bemisia tabaci. Taxonomy: The tomato yellow leaf curl virus‐like viruses (TYLCVs) are a complex of begomoviruses (family Geminiviridae, genus Begomovirus) including 10 accepted species: Tomato yellow leaf curl Axarquia virus (TYLCAxV), Tomato yellow leaf curl China virus (TYLCCNV), Tomato yellow leaf curl Guangdong virus (TYLCGuV), Tomato yellow leaf curl Indonesia virus (TYLCIDV), Tomato yellow leaf curl Kanchanaburi virus (TYLVKaV), Tomato yellow leaf curl Malaga virus (TYLCMalV), Tomato yellow leaf curl Mali virus (TYLCMLV), Tomato yellow leaf curl Sardinia virus (TYLCSV), Tomato yellow leaf curl Thailand virus (TYLCTHV), Tomato yellow leaf curl Vietnam virus (TYLCVNV) and Tomato yellow leaf curl virus(TYLCV). We follow the species demarcation criteria of the International Committee on Taxonomy of Viruses (ICTV), the most important of which is an 89% nucleotide identity threshold between full‐length DNA‐A component nucleotide sequences for begomovirus species. Strains of a species are defined by a 93% nucleotide identity threshold. Host range: The primary host of TYLCVs is tomato (Solanum lycopersicum), but they can also naturally infect other crops [common bean (Phaseolus vulgaris), sweet pepper (Capsicum annuum), chilli pepper (C. chinense) and tobacco (Nicotiana tabacum)], a number of ornamentals [petunia (Petunia×hybrida) and lisianthus (Eustoma grandiflora)], as well as common weeds (Solanum nigrum and Datura stramonium). TYLCVs also infect the experimental host Nicotiana benthamiana. Disease symptoms: Infected tomato plants are stunted or dwarfed, with leaflets rolled upwards and inwards; young leaves are slightly chlorotic; in recently infected plants, fruits might not be produced or, if produced, are small and unmarketable. In common bean, some TYLCVs produce the bean leaf crumple disease, with thickening, epinasty, crumpling, blade reduction and upward curling of leaves, as well as abnormal shoot proliferation and internode reduction; the very small leaves result in a bushy appearance.  相似文献   

14.
Eggplant (Solanum melongena L.) plants with severe leaf mosaic and mottling were found in a kitchen garden near cotton fields in Pakistan. Rolling Circle Amplification products from six of the naturally infected eggplant plants, subjected to PCR, successfully amplified expected products of 2.8 and 1.4 kb using begomovirus and betasatellite‐specific primers, respectively. Based on 99% nucleotide sequence identity, the virus was identified as a variant of Cotton leaf curl Burewala virus (CLCuBuV) (GenBank Accession No. HG428709). Likewise, the sequenced betasatellite with a maximum of 97% nucleotide sequence identity was recognized as a new variant of Cotton leaf curl Multan betasatellite (CLCuMuBMul) (GenBank Accession No. HG428708). The symptomatic induction of Cotton leaf curl disease in CLCuBuV susceptible cotton genotype CIM‐496 by back‐indexing further confirmed the presence of CLCuBuV in eggplant. This is the first report of CLCuBuV and its associate betasatellite in naturally infected plants of eggplant.  相似文献   

15.
A leaf curl disease with symptoms typical of begomoviruses was observed in bean (Phaseolus vulgaris) at the Main Research Farm of the Indian Institute of Pulses Research, Kanpur, India. Infected plants had severe distortion of leaves and the plants were unproductive. PCR indicated the involvement of French bean leaf curl virus (JQ866297), a recently described Begomovirus, and Tomato leaf curl Gujarat virus (ToLCGV). The full‐length genome of ToLCGV associated with leaf curl disease of bean was 2757 nucleotides long and had maximum identity (97–98%) with seven isolates of ToLCGV (AY234383, AF449999, EU573714, GQ994098, AY190290, FR819708, AF413671) and is designated as Tomato leaf curl Gujarat virus‐(IN:Knp:Bean:2013) (KF440686). To the best of our knowledge, this is the first record of ToLCGV infecting a leguminous host, P. vulgaris.  相似文献   

16.
The key regions in Panama involved in open field‐ and greenhouse‐grown commercial tomato production, including the Chiriquí, Veraguas, Herrera, Los Santos, Coclé and Panama Oeste provinces, were surveyed for the incidence and distribution of begomoviruses in the growing seasons of 2011 and 2012. The surveys took place in 14 of the 51 districts of the above‐mentioned provinces and comprised all relevant tomato production areas of the provinces. A total of 28 tomato plots were surveyed. The exact location of each plot was geo‐referenced using a hand‐held Global Positioning System unit. In total, 319 individual tomato plants (181 in 2011 and 138 in 2012) were sampled. Plants displayed diverse combinations of virus‐like symptoms of different severity, including necrosis, yellowing, mosaic, mottling, rolling, curling, distortion and puckering of leaves, reduced leaf size, and stunted growth. DNA was extracted from each plant for a subsequent polymerase chain reaction (PCR) analysis, using two sets of degenerate primers able to detect members of the genus Begomovirus. The samples displaying a positive reaction were subsequently analysed with specific primer pairs to identify the affecting begomoviruses. A total of 42.3% of all collected samples showed a positive signal to PCRs. Three begomovirus species were detected with the species‐specific set of primers; in particular, in the samples obtained in 2011, Potato yellow mosaic Panama virus (PYMPV), Tomato leaf curl Sinaloa virus (ToLCSiV) and Tomato yellow mottle virus (TYMoV) were detected, while in the 2012 samples, only PYMPV and ToLCSiV were found. To our knowledge, this is the first reported incidence of ToLCSiV and TYMoV in Panamanian tomato crops.  相似文献   

17.
18.
A stock culture of cotton leaf curl virus from Pakistan (CLCuV-PK), was transmitted by whiteflies (Bemisia tabaci) to seven plant species, including French bean, okra, tobacco and tomato, and caused vein thickening and leaf curl symptoms. It was readily detected in triple antibody sandwich ELISA (TAS-ELIS A) by 11 out of 31 monoclonal antibodies raised against the particles of three other geminiviruses: African cassava mosaic, Indian cassava mosaic and okra leaf curl viruses. Reaction strength was enhanced when the tissue extraction fluid contained sodium sulphite. Minor variations in epitope profile were found among virus isolates from cotton (Gossypium hirsutum) collected from different districts in Pakistan over a 5-year period. These epitope profiles were distinguishable from that of cotton leaf curl virus from G. barbadense in southern India but indistinguishable from the profiles of viruses causing yellow vein disease of okra in India or Pakistan, or leaf curl of okra {Abelmoschus esculentus), Hibiscus tiliaceus, radish or sunflower in Pakistan, suggesting that these plants are putative natural hosts of CLCuV-PK. The viruses in cotton, and in okra with leaf curl or yellow vein symptoms, were also detected by PCR with three pairs of CLCuV-PK-specific primers. Five additional whitefly-transmitted geminiviruses were found among isolates from 11 other naturally-infected species in Pakistan, and were distinguished by their epitope profiles. These viruses were associated, respectively, with tobacco leaf curl, squash yellow blotch, tomato yellow leaf curl, watermelon leaf crinkle and soybean yellow mosaic diseases. The first four of these viruses were detected readily by PCR with geminivirus general primers but only weakly, if at all, with two pairs of CLCuV-PK-specific primers. Pakistani crops are infected with a range of distinguishable but relatively closely related whitefly-transmitted geminiviruses, some of which resemble those found in India.  相似文献   

19.
Horizontal transmission of begomoviruses between Bemisia tabaci biotypes   总被引:1,自引:0,他引:1  
We have previously shown that the monopartite Tomato yellow leaf curl virus (TYLCV), a begomovirus (family Geminiviridae, genus Begomovirus) infecting tomato plants can be transmitted in a gender-dependent manner among its insect vector the whitefly Bemisia tabaci type B (Gennaduis) (Aleyrodidae: Hemiptera) during mating. Viruliferous females were able to transmit the virus to non-viruliferous males and vice versa, in the absence of any other virus source. The recipient insects were able to infect tomato plants. In this communication, we present evidence that two bipartite begomoviruses infecting cucurbits, Squash leaf curl virus (SLCV) and Watermelon chlorotic stunt virus (WmCSV) can be transmitted in a gender-dependent manner among whiteflies. In addition we show that TYLCV can be transmitted during mating among individuals from the same biotype (from B-males to B-females and vice versa; and from Q-males to Q-females and vice versa). However, viruliferous males of the B biotype are unable to transmit the virus to females of the Q biotype (and vice versa); similarly, viruliferous males of the Q biotype are unable to transmit the virus to females of the B biotype (and vice versa). These findings support the hypothesis that a pre-zygotic mating barrier between the Q and B biotypes is the cause for the absence of gene flow between the two biotypes, and that virus transmission can be used as a marker for inter-biotype mating. To be transmitted during mating, the virus needs to be present in the haemolymph of the donor insect. Abutilon mosaic virus (AbMV), a bipartite begomovirus that can be ingested but not transmitted by B. tabaci, is absent in the whitefly haemolymph, and cannot be transmitted during mating. Mating was a precondition for horizontal virus transfer from male to female, or female to male. Virus was not transmitted when viruliferous B. tabaci were caged with the non-vector non-viruliferous whitefly Trialeurodes vaporariorum (Westwood) (Aleyrodidae: Hemiptera) and vice versa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号