首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using Ca2+- and K+-selective microelectrodes, the cytosolic free Ca2+ and K+ concentrations were measured in mouse fibroblastic L cells. When the extracellular Ca2+ concentration exceeded several micromoles, spontaneous oscillations of the intracellular free Ca2+ concentration were observed in the submicromolar ranges. During the Ca2+ oscillations, the membrane potential was found to oscillate concomitantly. The peak of cyclic increases in the free Ca2+ level coincided in time with the peak of periodic hyperpolarizations. Both oscillations were abolished by reducing the extracellular Ca2+ concentration down to 10–7 m or by applying a Ca2+ channel blocker, nifedipine (50 m). In the presence of 0.5mm quinine, an inhibitor of Ca2+-activated K+ channel, sizable Ca2+ oscillations still persisted, while the potential oscillations were markedly suppressed. Oscillations of the intracellular K+ concentration between about 145 and 140mm were often associated with the potential oscillations. The minimum phase of the K+ concentration was always 5 to 6 sec behind the peak hyperpolarization. Thus, it is concluded that the oscillation of membrane potential results from oscillatory increases in the intracellular Ca2+ level, which, in turn, periodically stimulate Ca2+-activated K+ channels.  相似文献   

2.
Summary The properties of Ca2+-activated K+ channels in the apical membrane of theNecturus choroid plexus were studied using single-channel recording techniques in the cell-attached and excised-patch configurations. Channels with large unitary conductances clustered around 150 and 220 pS were most commonly observed. These channels exhibited a high selectivity for K+ over Na+ and K+ over Cs+. They were blocked by high cytoplasmic Na+ concentrations (110mm). Channel activity increased with depolarizing membrane potentials, and with increasing cytoplasmic Ca2+ concentrations. Increasing Ca2+ from 5 to 500nm, increased open probability by an order of magnitude, without changing single-channel conductance. Open probability increased up to 10-fold with a 20-mV depolarization when Ca2+ was 500nm. Lowering intracellular pH one unit, decreased open probability by more than two orders of magnitude, but pH did not affect single-channel conductance. Cytoplasmic Ba2+ reduced both channel-open probability and conductance. The sites for the action of Ba2+ are located at a distance more than halfway through the applied electric field from the inside of the membrane. Values of 0.013 and 117mm were calculated as the apparent Ba2+ dissociation constants (K d (0 mV) for the effects on probability and conductance, respectively. TEA+ (tetraethylammonium) reduced single-channel current. Applied to the cytoplasmic side, it acted on a site 20% of the distance through the membrane, with aK d (0 mV)=5.6mm. A second site, with a higher affinity,K d (0 mV)=0.23mm, may account for the near total block of chanel conductance by 2mm TEA+ applied to the outside of the membrane. It is concluded that the channels inNecturus choroid plexus exhibit many of the properties of maxi Ca2+-activated K+ channels found in other tissues.  相似文献   

3.
Summary The tight-seal whole-cell recording method has been used to studyNecturus choroid plexus epithelium. A cell potential of –59±2 mV and a whole cell resistance of 56±6 M were measured using this technique. Application of depolarizing step potentials activated voltage-dependent outward currents that developed with time. For example, when the cell was bathed in 110mm NaCl Ringer solution and the interior of the cell contained a solution of 110mm KCl and 5nm Ca2+, stepping the membrane potential from a holding value of –50 to –10 mV evoked outward currents which, after a delay of greater than 50 msec, increased to a steady state in 500 msec. The voltage dependence of the delayed currents suggests that they may be currents through Ca2+-activated K_ channels. Based on the voltage dependence of the activation of Ca2+-activated K+ channels, we have devised a general method to isolate the delayed currents. The delayed currents were highly selective for K+ as their reversal potential at different K+ concentration gradients followed the Nernst potential for K+. These currents were reduced by the addition of TEA+ to the bath solution and were eliminated when Cs+ or Na+ replaced intracellular K+. Increasing the membrane potential to more positive values decreased both the delay and the half-times (t 1/2) to the steady value. Increasing the pipette Ca2+ also decreased the delay and decreasedt 1/2. For instance, when pipette Ca2+ was increased from 5 to 500nm, the delay andt 1/2 decreased from values greater than 50 and 150 msec to values less than 10 and 50 msec. We conclude that the delayed currents are K+ currents through Ca2+-activated K+ channels.At the resting membrane potential of –60 mV, Ca2+-activated K+ channels contribute between 13 to 25% of the total conductance of the cell. The contribution of these channels to cell conductance nearly doubles with membrane depolarization of 20–30 mV. Such depolarizations have been observed when cerebrospinal fluid (CSF) secretion is stimulated by cAMP and with intracellular Ca2+. Thus the Ca2+-activated K+ channels may play a specific role in maintaining intracellular K+ concentrations during CSF secretion.  相似文献   

4.
Summary Calcium-activated potassium channels were the channels most frequently observed in primary cultured normal mammary cell and in the established mammary tumor cell, MMT060562. In both cells, single-channel and whole-cell clamp recordings sometimes showed slow oscillations of the Ca2+-gated K+ current. The characteristics of the Ca2+-activated K+ channels in normal and cancerous mammary cells were quite similar. The slope conductances changed from 8 to 70 pS depending on the mode of recording and the ionic composition in the patch electrode. The open probability of this channel increased between 0.1 to 1 m of the intracellular Ca2+, but it was independent of the membrane potential.Charybdotoxin reduced the activity of the Ca2+-activated K+ channel and the oscillation of the membrane current, but apamin had no apparent effect. The application of tetraethylammonium (TEA) from outside and BaCl2 from inside of the cell diminished the activity of the channel. The properties of this channel were different from those of both the large conductance (BK or MAXI K) and small conductance (SK) type Ca2+-activated K+ channels.  相似文献   

5.
Ca2+-activated K+ channels play an important role in Ca2+ signal transduction and may be regulated by mechanisms other than a direct effect of Ca2+. Inside-out patches of the apical membrane of confluent transformed rabbit cortical collecting duct cells cultured on collagen were subjected to patch clamp analysis. Two types of K+ channel, of medium and high conductance, were observed. The latter channel was characterized by a K+/Na+ permeability ratio of 10, an inwardly rectified current, a conductance of 80 pS at 0 mV, and an open probability dependent on both voltage and Ca2+. Guanosine 5-triphosphate (GTP) but not a guanosine 5-diphosphate (GDP) analogue, adenosine 5-triphosphate (ATP), cytidine 5-triphosphate (CTP), or inosine 5-triphosphate (ITP), inhibited the activity of this Ca2+-activated K+ channel. The inhibitory effect of GTP was dose dependent, with a 50% inhibitory concentration of 10–5 m in the absence of Mg2+. In the presence of Mg2+ (1 mm), which is required for the binding of GTP to G proteins, the 50% inhibitory concentration decreased to 3×10–12 m. Pertussis toxin or cholera toxin (each at 10 ng/ml) did not prevent the inhibitory effect of GTP. After removal of GTP from the medium bathing an inhibited channel, subsequent application of Ca2+ failed to activate the channel. Ca2+-activated K+ channels of smooth muscle cells and proximal tubule cells did not respond to GTP. Thus, the Ca2+-activated K+ channel in the apical membrane of collecting duct cells is inhibited by GTP, which appears to exert its effect via a G protein that is insensitive to both cholera and pertussis toxins.  相似文献   

6.
Summary Ca2+-activated K+ channels were studied in cultured medullary thick ascending limb (MTAL) cells using the patch-clamp technique in the inside-out configuration. The Ca2+ activation site was modified using N-bromoacetamide (NBA). 1mm NBA in the bath solution, at 2.5 m Ca2+ reduces the open probability,P o , of the channel to <0.01, without an effect on single-channel conductance. NBA-modified channels are still Ca2+-sensitive, requiring 25mm Ca2+ to raiseP o to 0.2. Both before and after NBA modification channel openings display at least two distributions, indicative of more than one open state. High Ca2+ (1mm) protects the channels from modification. Also presented is a second class of Ca2+-activated K+ channels which are normally present in MTAL cells which open infrequently at 10 m Ca2+ (P o =0.01) but have aP o of 0.08 at 1mm Ca2+. We can conclude (i) that NBA modifies the channel by shifting Ca2+-sensitivity to very high Ca2+, (ii) that NBA acts on a site involved in Ca2+ gating, and (iii) that a low affinity channel is present in the apical cell membrane with characteristics similar to those of normal channels modified with NBA.  相似文献   

7.
Macrophage polykaryons associated with the foreign body granuloma display several electrophysiological properties when studied with intracellular microelectrodes. One of the most evident properties is the slow hyperpolarization (2–5 s long, 10–60 mV amplitude), due to transient openings of Ca2+-dependent K+ channels, that is similar to those observed in macrophages. How this oscillation of membrane potential is triggered is not well known and the only way to repeatedly activate it under experimental control is through the intracellular injection of Ca2+. Although this technique is important for understanding the properties of the K+ channels, no information has been obtained about the way Ca2+ levels are raised and controlled in the cytosol. Slow hyperpolarizations can also be triggered by electrical stimulation, but reproducibility is low with cells bathed in physiological solutions. We then decided to investigate the effect of depolarization on the electrophysiological properties of macrophage polykaryons exposed to bathing solutions of several ionic compositions. We show in this paper that cell membrane depolarization induced by a long current pulse can trigger several patterns of membrane potential changes and that, in the absence of extracellular Na+, repetitive oscillations of decaying amplitudes are observed in almost all the cells. They are very similar to the slow hyperpolarizations, are dependent on the presence of extracellular Ca2+, and are blocked by quinine and D-600. Whole-cell patch clamp recording under voltage clamp conditions showed an outward current that oscillates and that also exhibits decaying amplitudes. The data presented here indicate that these oscillations are a consequence of the cyclic opening of the Ca2+-activated K+ channels and support the hypothesis that favors the participation of Ca2+ channels and of the Ca2+/Na+ exchange system in their triggering. These two mechanisms are not enough to explain either why the K+ channels close or why the membrane potential returns to the original level at the end of each cycle. The possibility of using these oscillations as a model to study the slow hyperpolarization is discussed.  相似文献   

8.
Summary We have previously reported hyperpolarizing membrane potential changes in a monkey kidney cell line (JTC-12) which has characteristics resembling proximal tubular cells. These hyperpolarizations could be observed spontaneously or evoked by mechanically touching adjacent cells. In this report, we have shown further evidence that these hyperpolarizations are elicited by an increase in membrane conductance to K+ which is caused by an increase in cytosolic Ca2+ concentration. In addition, we have found another type of hyperpolarization which is evoked by applying flow of extracellular fluid to the cell. Intracellular injection of Ca2+ and Sr2+ evoked hyperpolarizations, while intracellular injection of Mn2+ and Ba2+ did not. Intracellular injection of EGTA suppressed both spontaneous and mechanically evoked hyperpolarizations. In Ca2+-free medium, both spontaneous and flow-evoked hyperpolarizations were not observed, while mechanical stimuli consistently evoked hyperpolarization. In Na+-free medium, the incidence of cells showing the spontaneous or flow-evoked hyperpolarization increased, and the amplitude and the duration of the mechanically evoked hyperpolarization became greater. Quinidine inhibited all types of hyperpolarization. These data suggest that hyperpolarizations in JTC-12 cells are due to an increase in Ca2+-activated K+ conductance.  相似文献   

9.
10.
Paramecium Na+ channels, which were Ca2+-calmodulin activated, were studied in the inside-out mode of patch clamp. After excision of the membrane patch, they were active in the presence of 10–5 to 10–3 m Ca2+ in the bath. They became much less active in the presence of 10–6 m Ca2+, and their activity subsided completely at 10–8 m Ca2+. A Hill plot showed a dissociation constant of 6 m for Ca2+ binding. This dissociation constant shifted to a submicromolar range in the presence of 1 mm Mg2+. The channels also exhibited a mild voltage dependence. When exposed to 10–8 m Ca2+ for an extended period of 2–4 min, channels were further inactivated even after bath Ca2+ was restored to 10–4 m. Whereas neither high voltage (+100 mV) nor high Ca2+ (10–3 m) was effective in reactivation of the inactive channels, addition of Paramecium wild-type calmodulin together with high Ca2+ to the bath restored channel activity without a requirement of additional Mg2+ and metabolites such as ATP. The channels reactivated by calmodulin had the same ion conductance, ion selectivity and Ca2+ sensitivity as those prior to inactivation. These inactivation and reactivation of the channels could be repeated, indicating that the direct calmodulin effect on the Na+ channel was reversible. Thus, calmodulin is a physiological factor critically required for Na+ channel activation, and is the Ca2+ sensor of the Na+-channel gating machinery.We thank C. Kung for his kind support, and A. Boileau for critical reading. Supported by grants from National Institutes of Health GM 22714-20 and 36386-09.  相似文献   

11.
Summary In the mammalian distal colon, the surface epithelium is responsible for electrolyte absorption, while the crypts are the site of secretion. This study examines the properties of electrical potential-driven86Rb+ fluxes through K+ channels in basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon epithelium. We show that Ba2+-sensitive, Ca2+-activated K+ channels are present in both surface and crypt cell derived vesicles with half-maximal activation at 5×10–7 m free Ca2+. This suggests an important role of cytoplasmic Ca2+ in the regulation of the bidirectional ion fluxes in the colon epithelium.The properties of K+ channels in the surface cell membrane fraction differ from those of the channels in the crypt cell derived membranes. The peptide toxin apamin inhibits Ca2+-activated K+ channels exclusively in surface cell vesicles, while charybdotoxin inhibits predominantely in the crypt cell membrane fraction. Titrations with H+ and tetraethylammonium show that both high-and low-sensitive86Rb+ flux components are present in surface cell vesicles, while the high-sensitive component is absent in the crypt cell membrane fraction. The Ba2+-sensitive, Ca2+-activated K+ channels can be solubilized in CHAPS and reconstituted into phospholipid vesicles. This is an essential step for further characterization of channel properties and for identification of the channel proteins in purification procedures.  相似文献   

12.
We delineated the role of Ca2+-activated K+ channels in the phenomenon of spike frequency adaptation (SFA) exhibited by neurons in the caudal region of nucleus tractus solitarius (cNTS) using intracellular recording coupled with the current-clamp technique in rat brain slices. Intracellular injection of a constant depolarizing current evoked a train of action potentials whose discharge frequency declined rapidly to a lower steady-state level of irregular discharges. This manifested phenomenon of SFA was found to be related to extracellular Ca2+. Low Ca2+ (0.25 mM) or Cd2+ (0.5 mM) in the perfusing medium resulted in a significant increase in the adaptation time constant (adap) and an appreciable reduction in the percentage adaptation of spike frequency (Fadap). In addition, the evoked discharges were converted from an irregular to a regular pattern, accompanied by a profound increase in mean firing rate. Intriguingly, similar alterations in adap, Fadap, discharge pattern and discharge rate were elicited by apamin (1 µM), a selective blocker for small-conductance Ca2+-activated K+ (SK) channels. On the other hand, charybdotoxin (0.1 µM), a selective blocker for large-conductance Ca2+-activated K+ channels, was ineffective. Our results suggest that SK channels of cNTS neurons may subserve the generation of both SFA and irregular discharge patterns displayed by action potentials evoked with a prolonged depolarizing current.  相似文献   

13.
Summary The Ca2+-activated K+ channel in rat pancreatic islet cells has been studied using patch-clamp single-channel current recording in excised inside-out and outside-out membrane patches. In membrane patches exposed to quasi-physiological cation gradients (Na+ outside, K+ inside) large outward current steps were observed when the membrane was depolarized. The single-channel current voltage (I/V) relationship showed outward rectification and the null potential was more negative than –40 mV. In symmetrical K+-rich solutions the single-channelI/V relationship was linear, the null potential was 0 mV and the singlechannel conductance was about 250 pS. Membrane depolarization evoked channel opening also when the inside of the membrane was exposed to a Ca2+-free solution containing 2mm EGTA, but large positive membrane potentials (70 to 80 mV) were required in order to obtain open-state probabilities (P) above 0.1. Raising the free Ca2+ concentration in contact with the membrane inside ([Ca2+]i) to 1.5×10–7 m had little effect on the relationship between membrane potential andP. When [Ca2+]i was increased to 3×10–7 m and 6×10–7 m smaller potential changes were required to open the channels. Increasing [Ca2+]i further to 8×10–7 m again activated the channels, but the relationship between membrane potential andP was complex. Changing the membrane potential from –50 mV to +20 mV increasedP from near 0 to 0.6 but further polarization to +50 mV decreasedP to about 0.2. The pattern of voltage activation and inactivation was even more pronounced at [Ca2+]i=1 and 2 m. In this situation a membrane potential change from –70 to +20 mV increasedP from near 0 to about 0.7 but further polarization to +80 mV reducedP to less than 0.1. The high-conductance K+ channel in rat pancreatic islet cells is remarkably sensitive to changes in [Ca2+]i within the range 0.1 to 1 m which suggests a physiological role for this channel in regulating the membrane potential and Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

14.
To determine if their properties are consistent with a role in regulation of transepithelial transport, Ca2+-activated K+ channels from the basolateral plasma membrane of the surface cells in the distal colon have been characterized by single channel analysis after fusion of vesicles with planar lipid bilayers. A Ca2+-activated K+ channel with a single channel conductance of 275 pS was predominant. The sensitivity to Ca2+ was strongly dependent on the membrane potential and on the pH. At a neutral pH, the K 0.5 for Ca2+ was raised from 20nm at a potential of 0 mV to 300nm at –40 mV. A decrease in pH at the cytoplasmic face of the K+ channel reduced the Ca2+ sensitivity dramatically. A loss of the high sensitivity to Ca2+ was also observed after incubation with MgCl2, possibly a result of dephosphorylation of the channels by endogenous phosphatases. Modification of the channel protein may thus explain the variation in Ca2+ sensitivity between studies on K+ channels from the same tissue. High affinity inhibition (K 0.5=10nm) by charybdotoxin of the Ca2+-activated K+ channel from the extracellular face could be lifted by an outward flux of K+ through the channel. However, at the ion gradients and potentials found in the intact epithelium, charybdotoxin should be a useful tool for examination of the role of maxi K+ channels. The high sensitivity for Ca2+ and the properties of the activator site are in agreement with an important regulatory role for the high conductance K+ channel in the epithelial cells.Dr. E. Moczydlowsky, Yale University School of Medicine, New Haven, CT, and Dr. Per Stampe, Brandeis University, Waltham, MA, are thanked for introduction to the bilayer technique. Tove Soland is thanked for excellent technical assistance. This work was supported by the Novo Nordisk Foundation, the Carlsberg Foundation, the Danish Medical Research Council, and the Austrian Research Council.  相似文献   

15.
Summary Using patch-clamp techniques, we have studied Ca2+-activated K+ channels in the basolateral membrane of freshly isolated epithelial cells from rabbit distal colon. Epithelial cell clusters were obtained from distal colon by gentle mechanical disruption of isolated crypts. Gigaohm seals were obtained on the basolateral surface of the cell clusters. At the resting potential (approximately –45 mV), with NaCl Ringer's bathing the cell, the predominant channels had a conductance of 131±25 pS. Channel activity depended on voltage as depolarization of the membrane increased the open probability. In excised inside-out patches, channels were found to be selective for K+ over Na+. Channel activity correlated directly with bath Ca2+ concentration in the excised patches. Channel currents were blocked by 5mm TEA+ and 1mm Ba2+. In cell-attached patches, after addition of the Ca2+ ionophore A23187, which increases intracellular Ca2+, open probability was markedly increased. Channel activity was also regulated by cAMP as addition of 1mm dibutyryl-cAMP in the bath solution in cell-attached patches increased channel open probability over 20-fold. Channels that had been activated by cAMP were further activated by Ca2+. We conclude that the basolateral membrane of epithelial cells from descending colon contains a class of potassium channels, which are regulated by intracellular Ca2+ and cAMP.  相似文献   

16.
Summary Patch-clamp methods were used to study single-channel events in isolated oxyntic cells and gastric glands fromNecturus maculosa. Cell-attached, excised inside-out and outside-out patches from the basolateral membrane frequently contained channels which had conductances of 67±21 pS in 24% of the patches and channels of smaller conductance, 33±6 pS in 56% of the patches. Channels in both classes were highly selective for K+ over Na+ and Cl, and shared linear current-voltage relations. The 67-pS channel was activated by membrane depolarization, whereas the activity of the 33-pS channel was relatively voltage independent. The larger conductance channels were activated by intracellular Ca2+ in the range between 5 and 500nm, but unaffected by cAMP. The smaller conductance channels were activated by cAMP, but not Ca2+. The presence of K+ channels in the basolateral membrane which are regulated by these known second messengers can account for the increase in conductance and the hyperpolarization of the membrane observed upon secretagogue stimulation.  相似文献   

17.
The vas deferens forms part of the male reproductive tract and extends from the cauda epididymis to the prostate. Using the patch clamp technique, we have identified a Ca2+-activated, voltage-dependent, maxi K+ channel on the apical membrane of epithelial cells cultured from human fetal vas deferens. The channel had a conductance of 250 pS in symmetrical 140 mm K+ solutions, and was highly selective for K+ over Na+. Channel activity was increased by depolarization and by an elevation of bath (cytoplasmic) Ca2+ concentration, and reduced by cytoplasmic Ba2+ (5 mm) but not by cytoplasmic TEA (10 mm). Channel activity was also dependent on the cation bathing the cytoplasmic face of the membrane, being higher in a Na+-rich compared to a K+-rich solution. We estimated that up to 600 maxi K+ channels were present on the apical membrane of a vas cell, and that their density was 1–2 per 2 of membrane. Activity of the channel was low on intact cells, suggesting that it does not contribute to a resting K+ conductance. However, fluid in the lumen of the human vas deferens has a high K+ concentration and we speculate that the maxi K+ channel could play a role in transepithelial K+ secretion.Funded by grants from the Cystic Fibrosis Trust and the Medical Research Council (UK). We thank Mr. David Stephenson for excellent technical assistance.  相似文献   

18.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. However, many of their properties and their similarities to K+ channels found in animal cells had not previously been established. The channels open when the cells are depolarized in solutions with a high K+/Ca2+ ratio. In this work, the pharmacology of a previously identified plant K+ channel was examined. This survey showed that the channels have many properties which are similar to those of high-conductance Ca2+-activated K+ channels (highG K+(Ca2+)). K+ currents inChara were reduced by TEA+, Na+, Cs+, Ba2+, decamethonium and quinine, all inhibitors of, among other things, highG K+(Ca2+) channels. Tetracaine also inhibited K+ currentsChara, but its effect on most types of K+ channels in animal tissues is unknown. The currents were not inhibited by 4-aminopyridine (4AP), caffeine, tolbutamide, dendrotoxin, apamin or tubocurarine, which do not inhibit highG K+(Ca2+) channels, but affect other classes of K+ channels. The channels were locked open by 4AP, in a remarkably similar manner to that reported for K+(Ca2+) channels of a molluscan neuron. No evidence for the role of the inositol cycle in channel behavior was found, but its role in K+ channel control in animal cells is obscure. Potassium conductance was slightly decreased upon reduction of cytoplasmic ATP levels by cyanide + salicylhydroxamic acid (SHAM), consistent with channel control by phosphorylation. The anomalously strong voltage dependence of blockade by some ions (e.g. Cs+) is consistent with the channels being multiion pores. However, the channels also demonstrate some differences from the highG K+(Ca2+) channels found in animal tissues. The venom of the scorption,Leiurus quinquestriatus (LQV), and a protein component, charybdotoxin (CTX), an apparently specific inhibitor of highG K+(Ca2+) channels in various animal tissues, had no effect on the K+ channels in theChara plasmalemma. Als,, pinacidil, an antihypertensive drug which may increase highG K+(Ca2+) channel activity had no effect on the channels inChara. Although the described properties of theChara K+ channels are most similar to those of high conductance K+(Ca2+) in animal cells, the effects of CTX and pinacidil are notably different; the channels are clearly of a different structure to those found in animal cells, but are possibly related.  相似文献   

19.
Summary Bovine aortic endothelial cells (BAECs) respond to bradykinin with an increase in cytosolic-free Ca2+ concentration, [Ca2+] i , accompanied by an increase in surface membrane K+ permeability. In this study, electrophysiological measurement of K+ current was combined with86Rb+ efflux measurements to characterize the K+ flux pathway in BAECs. Bradykinin- and Ca2+-activated K+ currents were identified and shown to be blocked by the alkylammonium compound, tetrabutylammonium chloride and by the scorpion toxin,noxiustoxin, but not by apamin or tetraethylammonium chloride. Whole-cell and single-channel current analysis suggest that the threshold for Ca2+ activation is in the range of 10 to 100nm [Ca2+] i . The whole-cell current measurement show voltage sensitivity only at the membrane potentials more positive than 0 mV where significant current decay occurs during a sustained depolarizing pulse. Another K+ current present in control conditions, an inwardly rectifying K+ current, was blocked by Ba2+ and was not affected bynoxiustoxin or tetrabutylammonium chloride. Efflux of86Rb from BAEC monolayers was stimulated by both bradykinin and ionomycin. Stimulated efflux was blocked by tetrabutyl- and tetrapentyl-ammonium chloride and bynoxiustoxin, but not by apamin or furosemide. Thus,86Rb+ efflux stimulated by bradykinin and ionomycin has the same pharmacological sensitivity as the bradykinin- and Ca2+-activated membrane currents. The results confirm that bradykinin-stimulated86Rb+ efflux occurs via Ca2+-activated K+ channels. The blocking agents identified may provide a means for interpreting the role of the Ca2+-activated K+ current in the response of BAECs to bradykinin.  相似文献   

20.
Summary The steady N shapeI/V curves were obtained by applying slow ramp hyper- and depolarization pulses toChara cells under the voltage-clamp condition. Application of calcium channel blocker, 20 m La3+, to theChara membrane caused, in about 30 min, a marked reduction of the transient inward current and later almost complete blocking of the pump current, while the steady outward current remained almost unaffected. Removal of external Ca2+ with 0.5mm EGTA caused similar results. Application of calmodulin antagonists, 10 m TFP or 20 m W-7, also gave very similar results, i.e., the decrease of the transient inward current and of H+-pump activity. These results suggest that not only the excitatory mechanisms but also the H+-pump activity ofChara membrane are regulated by calmodulin within a comparatively narrow range of internal Ca2+ level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号