首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
TTF-1 is a member of the NKx family of homeodomain genes, and is required for morphogenesis and fetal diencephalon development. Our previous studies have shown that TTF-1 expression is maintained in some regions of the postnatal rat brain and transactivates the gene expression of several neuropeptides. In this study, a potential role for TTF-1 in the regulation of feeding behavior was identified. Immunohistochemical analysis showed that TTF-1 is present in several hypothalamic nuclei of the adult rat brain involved in the control of feeding behavior. Food deprivation for two days markedly increased the hypothalamic levels of TTF-1 mRNA and protein. Intracerebroventricular administration of an antisense TTF-1 oligodeoxynucleotide significantly decreased TTF-1 protein abundance in the hypothalamus. This TTF-1 decrease was followed by a significant decrease in neuropeptide Y mRNA content and an increase in proopiomelanocortin mRNA content, and in turn resulted in a decrease of the animal's food intake and body weight. These results suggest a novel role for TTF-1 in the regulation of feeding behavior in the rat hypothalamus.  相似文献   

5.
The purpose of this study is to examine the regulation of blood pressure and fluid and electrolyte homeostasis in mice overexpressing angiotensin II (Ang-II) in the brain and to determine whether there are significant physiologic differences in Ang-II production in neurons or glia. Therefore, we generated and characterized transgenic mice overexpressing human renin (hREN) under the control of the glial fibrillary acidic protein (GFAP) promoter (GFAP-hREN) and synapsin-I promoter (SYN-hREN) and bred them with mice expressing human angiotensinogen (hAGT) under the control of the same promoters (GFAP-hAGT and SYN-hAGT). Both GFAP-hREN and SYN-hREN mice exhibited the highest hREN mRNA expression in the brain and had undetectable levels of hREN protein in the systemic circulation. In the brain of GFAP-hREN and SYN-hREN mice, hREN protein was observed almost exclusively in astrocytes and neurons, respectively. Transgenic mice overexpressing both hREN and hAGT transgenes in either glia or neurons were moderately hypertensive. In the glia-targeted mice, blood pressure could be corrected by intracerebroventricular injection of the Ang-II type 1 receptor antagonist losartan, and intravenous injection of a ganglion blocking agent, but not an arginine vasopressin V1 receptor antagonist, lowered blood pressure. These data suggest that stimulation of Ang-II type 1 receptors in the brain by Ang-II derived from local synthesis of renin and angiotensinogen can cause an elevation in blood pressure via a mechanism involving enhanced sympathetic outflow. Glia- and neuron-targeted mice also exhibited an increase in drinking volume and salt preference, suggesting that chronic overexpression of renin and angiotensinogen locally in the brain can result in hypertension and alterations in fluid homeostasis.  相似文献   

6.
7.
Quantitative autoradiography was used to localize and characterize atrial natriuretic peptide (ANP) receptors in the rat brain and to study their regulation. Peptide receptors are selectively located to circumventricular organs outside the blood brain barrier, such as the subfornical organ, and to brain areas involved in fluid and cardiovascular regulation. Dehydration, either by water deprivation of normal rats, or chronic dehydration present in homozygous Brattleboro rats lacking vasopressin, results in large increases in ANP binding in receptor number in the subfornical organ. In the deoxycorticosterone acetate (DOCA)-salt hypertensive model, only salt treatment, but not DOCA alone or the combination of DOCA-salt, increased the ANP receptor number in the subfornical organ and the choroid plexus. Both young and adult genetically hypertensive rats have a greatly decreased ANP receptor number in the subfornical organ and the choroid plexus. Selective displacement with an inactive analog lacking the disulfide bond (ANP 111-126) suggests that genetically hypertensive rats may lack C (clearance) atrial natriuretic peptide receptors. Our results implicate brain atrial natriuretic peptide receptors in the central response to alterations in fluid regulation and blood pressure.  相似文献   

8.
9.
10.
11.
Thyroid transcription factor-1   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
14.
15.
16.
1. Binding sites for angiotensin II have been localized in forebrain and brain-stem areas of water-deprived and control Sprague-Dawley rats, employing autoradiography with computerized microdensitometry. 2. Angiotensin II receptor sites were identified in the organum vasculosum of the lamina terminalis, subfornical organ, paraventricular nucleus, median preoptic nucleus, area postrema, nucleus of the solitary tract, and inferior olive. 3. After dehydration a significant increases in the concentration of angiotensin II receptors was detected only in the subfornical organ. Although there was an increased concentration of angiotensin II binding sites in the organum vasculosum of the lamina terminalis, the median preoptic nucleus, and the paraventricular nucleus after dehydration, these changes did not reach statistical significance. Other brain nuclei investigated did not show differences in angiotensin II binding sites in the dehydrated rats compared to controls. 4. These results indicate that angiotensin II receptors in the subfornical organ may play an important role in fluid homeostasis during dehydration.  相似文献   

17.
18.
19.
20.
TGR(ASrAOGEN)680, a newly developed transgenic rat line with specific downregulation of astroglial synthesis of angiotensinogen, exhibits decreased brain angiotensinogen content associated with a mild diabetes insipidus and lower blood pressure. Autoradiographic experiments were performed on TGR(ASrAOGEN) (TG) and Sprague-Dawley (SD) control rats to quantify AT(1) and AT(2) receptor-binding sites in different brain nuclei and circumventricular organs. Dose-response curves for drinking response to intracerebroventricular injections of ANG II were compared between SD and TG rats. In most of the regions inside the blood-brain barrier [paraventricular nucleus (PVN), piriform cortex, lateral olfactory tract (LOT), and lateral preoptic area (LPO)], AT(1) receptor binding (sensitive to CV-11974) was significantly higher in TG compared with SD. In contrast, in the circumventricular organs investigated [subfornical organ (SFO) and area postrema], AT(1) receptor binding was significantly lower in TG. AT(2) receptors (binding sensitive to PD-123319) were detected at similar levels in the inferior olive (IO) of both strains. Angiotensin-binding sites sensitive to both CV-11974 and PD-123319 were detected in the LPO of SD rats and specifically upregulated in LOT, IO, and most notably PVN and SFO of TG. The dose-response curve for water intake after intracerebroventricular injections showed a higher sensitivity to ANG II of TG (EC(50) = 3.1 ng) compared with SD (EC(50) = 11.2 ng), strongly suggesting that the upregulation of AT(1) receptors inside the blood-brain barrier of TG rats is functional. Finally, we showed that downregulation of angiotensinogen synthesized by astroglial cells differentially regulates angiotensin receptor subtypes inside the brain and in circumventricular organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号