首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin‐binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin‐dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin‐dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin‐dependent transdifferentiation to re‐establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin‐dependent germination of spores. Specific calmodulin‐binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.  相似文献   

2.
3.
Carrot cell cultures were used to study the dynamics of calmodulin protein levels, calmodulin methylation, and calmodulin-binding proteins during plant growth and development. Comparisons of proliferating and nonproliferating wild carrot cells show that, while calmodulin protein levels does not vary significantly, substantial variation in post-translational methylation of calmodulin on lysine-115 is observed. Calmodulin methylation is low during the lag and early exponential stages, but increases substantially as exponential growth proceeds and becomes maximal in the postexponential phase. Unmethylated calmodulin quickly reappears within 12 h of reinoculation of cells into fresh media, suggesting that the process is regulated according to the cell growth state. Calmodulin and calmodulin-binding proteins were also analyzed during the formation and germination of domestic carrot embryos in culture. Neither calmodulin methylation nor calmodulin protein levels varied significantly during somatic embryogenesis. However, upon germination of embryos, the level of calmodulin protein doubled. By calmodulin overlay analysis, we have detected a major 54,000 M(r) calmodulin-binding protein that also increased during embryo germination. This protein was purified from carrot embryo extracts by calmodulin-Sepharose chromatography. Overall, the data suggest that calmodulin methylation is regulated depending upon the state of cell growth and that calmodulin and its target proteins are modulated during early plant development.  相似文献   

4.
A method has been developed for binding calmodulin, radioiodinated by the lactoperoxidase method, to denaturing gels and has been used to attempt to identify the calmodulin-binding proteins of cerebral cortex postsynaptic densities (PSDs). Calmodulin primarily bound to the major 51,000 Mr protein in a saturatable manner; secondarily bound to the 60,000 Mr region, 140,000 Mr region, and 230,000 Mr protein; and bound in lesser amounts to a number of other proteins. The major 51,000 Mr calmodulin-binding protein is one of unknown identity. Binding of iodinated calmodulin to these proteins was blocked by EDTA, EGTA, chlorpromazine, and preincubation with unlabeled calmodulin. Calmodulin iodinated by the chloramine-T method, which inactivates calmodulin did not bind to the PSD but bound nonspecifically to histone. Calmodulin did not bind to proteins from a variety of sources for which calmodulin interactions have not been found. Except for three proteins, all of the proteins of synaptic membranes that bind calmodulin could be accounted for by proteins of the PSD which are a part of the synaptic membrane fraction. The major 51,000 M, protein and the corresponding iodinated calmodulin binding were greatly reduced in cerebellar PSDs and this difference between cerebral cortex and cerebellar PSDs is discussed in light of the possible function of calmodulin in synaptic excitatory responses.  相似文献   

5.
We have developed a simplified procedure for the production of metabolically labeled calmodulin. We used bacterial clones (Escherichia coli) that were found to express VU-1 calmodulin, a calmodulin that is fully active with a variety of calmodulin-regulated enzymes. VU-1 calmodulin was labeled with sulfur-35 in bacteria maintained in a sulfur-free medium. Calmodulin was then purified by chromatography on phenyl-Sepharose. Under these conditions, the specific activity of the proteins was 150 to 400 cpm/fmol of calmodulin. To demonstrate the utility of this labeled VU-1 calmodulin, we examined the calmodulin-binding proteins in aortic myocyte preparation from Day 0 and Day 15 cultures by using both the gel and the nitrocellulose overlay protocols. The results showed that calmodulin-binding proteins are easily detected by the two procedures and that the profile of these target proteins changed in myocyte with time in culture. While most of these calmodulin-binding proteins have not been identified, the relative mobility on SDS-PAGE gels suggests that myosin light chain kinase (Mr approximately 137,000) was detected by these methods. We demonstrated here that the nitrocellulose overlay was faster than the gel overlay and that this technique can be useful for the study of calmodulin-binding proteins.  相似文献   

6.
Calcium/calmodulin-mediated signal network in plants   总被引:24,自引:0,他引:24  
  相似文献   

7.
Previous work has demonstrated that estrogen administration to immature chickens results in a rapid but transient increase in nuclear estrogen receptor content, a large portion of which is associated with the nuclear matrix. The present studies were undertaken to determine whether estrogen produced a more generalized change in the protein composition of the nuclear matrix. High-resolution two-dimensional gel analysis of the matrix revealed a very complex protein pattern, but several major qualitative differences were observed after estrogen treatment. To simplify the number of proteins evaluated, we examined the effects of estrogen on a subset of matrix proteins, namely, calmodulin and its binding proteins. Calmodulin was measured by radioimmunoassay and the binding proteins were detected by interaction of 125I-calmodulin with matrix proteins distributed on one-dimensional polyacrylamide gels. Calmodulin and two specific Ca2+-dependent calmodulin-binding proteins were found to be associated with matrix preparations. The two binding proteins exhibited apparent Mr of 200,000 and 130,000. The Mr 130,000 protein was identified as myosin light chain kinase on the basis of enzymatic activity and immunoreactivity with a specific antibody to this enzyme. Estrogen treatment of immature chickens did not alter the hepatic content of calmodulin. However, the steroid did result in an enrichment of the proportion of calmodulin and its two binding proteins associated with the nuclear matrix within 4 h after injection. The time course of these changes paralleled those previously documented for estrogen receptor. Taken together, these data are compatible with a role for calmodulin and myosin light chain kinase in the response of chicken liver cells to steroid hormones.  相似文献   

8.
Calmodulin is a small, highly conserved acidic protein present at high levels in spermatozoa that mediates numerous intracellular Ca2+-dependent events. Sperm motility and fertilizing ability results from an array of biochemical pathways under Ca2+ control, in which the importance of calmodulin is not fully understood. The role of calmodulin in sperm function has been mostly assessed using antagonists. Nevertheless, few known calmodulin-regulated enzymes have been described in spermatozoa regarding their involvement in sperm function. To further understand the role of this important Ca2+ mediator in spermatozoa, different studies were also undertaken to investigate and to identify sperm calmodulin-binding proteins and determine their localization and subcellular distribution as an attempt to elucidate the role of this important Ca2+ mediator. In the present study, sperm calmodulin-binding proteins were identified by mass spectrometry after Ca2+-dependent biotinylated-calmodulin binding on sperm head proteins subjected to 2D electrophoresis and transferred on a polyvinylidene difluoride membrane. Calmodulin binding protein identification was also done on detergent extracted whole sperm proteins pulled down in a Ca2+-dependent manner by calmodulin-conjugated sepharose beads. In this latter group, 300 proteins were identified in at least two experiments out of three, and those identified in the three independent experiments were analyzed for overrepresented biological processes using the Bos taurus Gene Ontology database. Proteins with known function in reproductive processes, fertilization, sperm-egg recognition, sperm binding to the zona pellucida, regulation of sperm capacitation, and sperm motility were identified and further emphasize the importance of calmodulin in sperm function.  相似文献   

9.
A plant kinesin heavy chain-like protein is a calmodulin-binding protein   总被引:8,自引:0,他引:8  
Calmodulin, a calcium modulated protein, regulates the activity of several proteins that control cellular functions. A cDNA encoding a unique calmodulin-binding protein, PKCBP, was isolated from a potato expression library using protein-protein interaction based screening. The cDNA encoded protein bound to biotinylated calmodulin and 35S-labeled calmodulin in the presence of calcium and failed to bind in the presence of EGTA, a calcium chelator. The deduced amino acid sequence of the PKCBP has a domain of about 340 amino acids in the C-terminus that showed significant sequence similarity with the kinesin heavy chain motor domain and contained conserved ATP- and microtubule-binding sites present in the motor domain of all known kinesin heavy chains. Outside the motor domain, the PKCBP showed no sequence similarity with any of the known kinesins, but contained a globular domain in the N-terminus and a putative coiled-coil region in the middle. The calmodulin-binding region was mapped to a stretch of 64 amino acid residues in the C-terminus region of the protein. The gene is differentially expressed with the highest expression in apical buds. A homolog of PKCBP from Arabidopsis (AKCBP) showed identical structural organization indicating that kinesin heavy chains that bind to calmodulin are likely to exist in other plants. This paper presents evidence that the motor domain has microtubule stimulated ATPase activity and binds to microtubules in a nucleotide-dependent manner. The kinesin heavy chain-like calmodulin-binding protein is a new member of the kinesin superfamily as none of the known kinesin heavy chains contain a calmodulin-binding domain. The presence of a calmodulin-binding motif and a motor domain in a single polypeptide suggests regulation of kinesin heavy chain driven motor function(s) by calcium and calmodulin.  相似文献   

10.
Calmodulin was isolated and purified to homogeneity from dog pancreas. Highly purified subcellular fractions were prepared from dog pancreas by zonal sucrose-density ultracentrifugation and assayed for their ability to bind 125I-calmodulin in vitro. Proteins contained in these fractions were also examined for binding of 125I-calmodulin after their separation by polyacrylamide-gel electrophoresis in SDS. Calmodulin-binding proteins were detected in all subcellular fractions except the zymogen granule and zymogen-granule membrane fractions. One calmodulin-binding protein (Mr 240,000), observed in a washed smooth-microsomal fraction, has properties similar to those of alpha-fodrin. The postribosomal-supernatant fraction contained three prominent calmodulin-binding proteins, with apparent Mr values of 62,000, 50,000 and 40,000. Calmodulin-binding proteins, prepared from a postmicrosomal-supernatant fraction by Ca2+-dependent affinity chromatography on immobilized calmodulin, exhibited calmodulin-dependent phosphodiesterase, protein phosphatase and protein kinase activities. In the presence of Ca2+ and calmodulin, phosphorylation of smooth-muscle myosin light chain and brain synapsin and autophosphorylation of a Mr-50,000 protein were observed. Analysis of the protein composition of the preparation by SDS/polyacrylamide-gel electrophoresis revealed a major protein of Mr 50,000 which bound 125I-calmodulin. This protein shares characteristics with the calmodulin-dependent multifunctional protein kinase (kinase II) recently observed to have a widespread distribution. The possible role of calmodulin-binding proteins and calmodulin-regulated enzymes in the regulation of exocrine pancreatic protein synthesis and secretion is discussed.  相似文献   

11.
Probing of Dictyostelium discoideum cell extracts after SDS-PAGE using (35)S-recombinant calmodulin (CaM) as a probe has revealed approximately three-dozen Ca(2+)-dependent calmodulin binding proteins. Here, we report the molecular cloning, expression, and subcellular localization of a gene encoding a novel calmodulin-binding protein (CaMBP); we have called nucleomorphin, from D. discoideum. A lambdaZAP cDNA expression library of cells from multicellular development was screened using a recombinant calmodulin probe ((35)S-VU1-CaM). The open reading frame of 1119 nucleotides encodes a polypeptide of 340 amino acids with a calculated molecular mass of 38.7 kDa and is constitutively expressed throughout the Dictyostelium life cycle. Nucleomorphin contains a highly acidic glutamic/aspartic acid inverted repeat (DEED) with significant similarity to the conserved nucleoplasmin domain and a putative transmembrane domain in the carboxyl-terminal region. Southern blotting reveals that nucleomorphin exists as a single copy gene. Using gel overlay assays and CaM-agarose we show that bacterially expressed nucleomorphin binds to bovine CaM in a Ca(2+)-dependent manner. Amino-terminal fusion to the green fluorescence protein (GFP) showed that GFP-NumA localized to the nucleus as distinct arc-like patterns similar to heterochromatin regions. GFP-NumA lacking the acidic DEED repeat still showed arc-like accumulations at the nuclear periphery, but the number of nuclei in these cells was increased markedly compared with control cells. Cells expressing GFP-NumA lacking the transmembrane domain localized to the nuclear periphery but did not affect nuclear number or gross morphology. Nucleomorphin is the first nuclear CaMBP to be identified in Dictyostelium. Furthermore, these data present the first identification of a member of the nucleoplasmin family as a calmodulin-binding protein and suggest nucleomorphin has a role in nuclear structure in Dictyostelium.  相似文献   

12.
《The Journal of cell biology》1983,97(5):1644-1647
Purified chloroplasts from spinach and pea leaves were subfractionated into envelope, thylakoid, and stroma fractions and were analyzed for calmodulin-binding proteins using a 125I-calmodulin gel overlay assay. Calmodulin binding was primarily associated with a major polypeptide (Mr 33,000) in the envelope membrane fraction. In contrast, major calmodulin-binding proteins were not detected in the thylakoid or stroma fractions. Our results provide the first evidence of calmodulin- binding proteins in the chloroplast envelope, and raise the possibility that calmodulin may contribute to the regulation of chloroplast function through its interaction with calmodulin-binding proteins in the chloroplast envelope. In addition, our results combined with those of other investigators support the proposal that subcellular organelles may be a primary site of calmodulin action.  相似文献   

13.
mAbs specific for calmodulin were used to examine the distribution of calmodulin in vegetative Dictyostelium cells. Indirect immunofluorescence indicated that calmodulin was greatly enriched at the periphery of phase lucent vacuoles. The presence of these vacuoles in newly germinated (non-feeding) as well as growing cells, and the response of the vacuoles to changes in the osmotic environment, identified them as contractile vacuoles, osmoregulatory organelles. No evidence was found for an association of calmodulin with endosomes or lysosomes, nor was calmodulin enriched along cytoskeletal filaments. When membranes from Dictyostelium cells were fractionated on equilibrium sucrose density gradients, calmodulin cofractionated with alkaline phosphatase, a cytochemical marker for contractile vacuole membranes, at a density of 1.156 g/ml. Several high molecular weight calmodulin-binding proteins were enriched in the same region of the gradient. One of the calmodulin-binding polypeptides (molecular mass approximately 150 kD) cross-reacted with an antiserum specific for Acanthamoeba myosin IC. By indirect immunofluorescence, this protein was also enriched on contractile vacuole membranes. These results suggest that a calmodulin-binding unconventional myosin is associated with contractile vacuoles in Dictyostelium; similar proteins in yeast and mammalian cells have been implicated in vesicle movement.  相似文献   

14.
The location of calmodulin in the pea plasma membrane   总被引:8,自引:0,他引:8  
Plasma membrane has been prepared from pea seedlings in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA). Calmodulin has been detected in these plasma membrane preparations using calcium overlay techniques, immunoblots, quantitation with antibodies raised against spinach calmodulin, phosphodiesterase activation, mobility shift, and heat stability. EGTA-stable calmodulin represents 0.5-1% of the total plasma membrane protein, and it is the only detectable calcium-binding protein in plasma membrane isolated under these conditions. The anti-spinach calmodulin reacts only with the N-terminal region of spinach calmodulin representing residues 1-106. The positioning of EGTA-stable calmodulin in the plasma membrane has been probed with trypsin and anti-spinach calmodulin. The data suggest that the calmodulin N-terminal region representing residues 1-106 projects from the membrane and could be available for binding other proteins. Calcium-dependent calmodulin binding to the plasma membrane has also been detected. Calcium-dependent calmodulin-binding proteins have been characterized using calmodulin overlay methods. The exposure of calmodulin-binding domains of most of these proteins from the plasma membrane is further suggested by their reaction with azidoiodinated calmodulin.  相似文献   

15.
A ribosomal calmodulin-binding protein from Dictyostelium.   总被引:1,自引:0,他引:1  
Using 125I-calmodulin as a probe, we have recently identified specific Ca2+/calmodulin-binding proteins in cell extracts from the cellular slime mold, Dictyostelium discoideum: a major 22-kDa activity, a soluble 78/80-kDa protein, and several membrane-associated high Mr proteins (Winckler, T., Dammann, H., and Mutzel, R. (1991) Res. Microbiol. 142, 509-519). cDNA clones for at least two of these proteins have been isolated by ligand screening of a lambda gt11 prophage expression library. Antibodies directed against the lacZ-cDNA-encoded fusion protein from one of the clones recognized a single 22-kDa component in D. discoideum extracts which comigrated with the endogenous 22-kDa calmodulin-binding protein. The cDNA-derived nucleotide sequence predicts a protein of Mr 21,659 with 56% sequence identity (69% homology) with rat ribosomal protein L19. The endogenous 22-kDa calmodulin-binding activity was associated with ribosomes. It was found to be an integral constituent of the large ribosomal subunit, since it cosedimented with 60 S ribosomal subunits in sucrose density gradients in the presence of 0.5 M NH4Cl. Our observations point to a physiological role for calmodulin in the Ca2+ regulation of eukaryotic protein synthesis. Support for this comes from recent studies showing inhibition of protein synthesis by calmodulin antagonists in Ehrlich ascites tumor cells (Kumar, R. V., Panniers, R., Wolfman, A., and Henshaw, E.C. (1991) Eur. J. Biochem. 195, 313-319).  相似文献   

16.
Calmodulin is an essential Ca2+-binding protein that binds to a variety of targets that carry out critical signaling functions. We describe the proteomic characterization of mouse brain Ca2+-calmodulin-binding proteins that were purified using calmodulin affinity chromatography. Proteins in the eluates from four different affinity chromatography experiments were identified by 1-DE and in-gel digestion followed by LC-MS/MS. Parallel experiments were performed using two related control-proteins belonging to the EF-hand family. After comparing the results from the different experiments, we were able to exclude a significant number of proteins suspected to bind in a nonspecific manner. A total of 140 putative Ca2+-calmodulin-binding proteins were identified of which 87 proteins contained calmodulin-binding motifs. Among the 87 proteins that contained calmodulin-binding motifs, 48 proteins have not previously been shown to interact with calmodulin and 39 proteins were known calmodulin-binding proteins. Many proteins with ill-defined functions were identified as well as a number of proteins that at the time of the analysis were described only as ORFs. This study provides a functional framework for studies on these previously uncharacterized proteins.  相似文献   

17.
Calmodulin is a Ca(+2)-binding protein important in a variety of cell functions. The Ca(+2)/calmodulin complex interacts with and regulates various enzymes and target proteins, known as calmodulin-binding proteins (CaMBPs). In this study, we revealed a comparative identification of the CaMBPs composition in the worker honeybee (Apis mellifera) brain, considering two different honeybee behaviors in the colony. To this end, the CaMBPs of forager and nurse workers were purified by affinity chromatography, separated in 1D gel, digested and submitted to peptide mass fingerprinting (PMF). In the PMF analysis, 15 different proteins, considered behavior-specific proteins, were identified, one of them exclusively in forager workers and 10 in nurses. All the proteins were classified in terms of their function and cell localization, revealing a greater expression of metabolism-related CaMBPs in both worker subcastes. Protein sequences were then analyzed for the presence of the calmodulin-binding sites. Therefore, the honeybee brain CaMBPs profiles presented differences between worker subcastes. This is the first identification of calmodulin-binding proteins in the brain of A. mellifera upon nursing and foraging behaviors in the colony and this diversity of target proteins for Ca(+2)/CaM may be involved in terms of the function of these proteins in the nervous system.  相似文献   

18.
Isolation and properties of calmodulin from Dictyostelium discoideum.   总被引:16,自引:2,他引:14       下载免费PDF全文
A calcium-dependent regulatory protein (calmodulin) was purified from vegetative amoebae of Dictyostelium discoideum. The properties of Dictyostelium calmodulin are similar but not identical to those of bovine brain calmodulin. Calmodulin activity was not detected in extracts of Saccharomyces cerevisiae or Escherichia coli.  相似文献   

19.
A cDNA clone (pTCB48) encoding a calmodulin-binding protein was isolated by screening a lambda ZAPII cDNA expression library constructed from cell cultures of heat-shocked tobacco (Nicotiana tabacum L. cv Wisconsin-38) with metabolically labeled [35S]calmodulin. Calmodulin gel overlay analysis indicated that pTCB48 generated major peptides of 53, 36, and 22 kD and two minor peptides of 37 and 16 kD that bound calmodulin in a Ca(2+)-dependent manner. Deletion analysis of pTCB48 indicated that these and the minor calmodulin-binding proteins resulted from the insert. A probe made from the cDNA insert recognized two bands with sizes of 2.1 and 1.8 kb on northern blot analysis. Both species of RNAs were undetectable in the control and were induced after 15 min of heat-shock treatment at 38 degrees C. The intensity of the two bands reached maximum after 1.5 h of heat-shock treatment. The cDNA clone was not full length; however, the complete sequence was determined by 5' rapid amplification of cDNA ends using nested antisense primers. The full-length cDNA contains 1648 bp and a single open reading frame of 1347 bp and is expected to encode a protein of approximately 50 kD. No significant homology with other reported genes and proteins was found. Structural predictions, deletion analysis, and gel overlay analysis suggested that the calmodulin-binding domain was a basic amphiphilic alpha-helix near the C terminus of the protein. The strong induction of the mRNA for this protein suggests a role for Ca2+/calmodulin-mediated process in the heat-shock response.  相似文献   

20.
The calmodulin antagonists trifluoperazine and compound R24571 were used to study the function of calmodulin during sexual development in Dictyostelium discoideum. Calmodulin activity is required for both cell fusion and pronuclear fusion. However, cell fusion and pronuclear fusion were each maximally inhibited at different concentrations of the same inhibitor suggesting differential calmodulin activity during these events. In contrast, trifluoperazine and R24571 were both found to enhance rather than inhibit the formation of gametes. This suggests an additional role for calmodulin as a negative regulator of gamete development. These results provide evidence of a role for calmodulin as both a positive (biomembrane fusion) and a negative (gamete development) regulator of developmental events in Dictyostelium. They also reveal calmodulin as a mediator of pronuclear fusion for zygote development in this eukaryote.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号