共查询到20条相似文献,搜索用时 0 毫秒
1.
D A Chappell G L Fry M A Waknitz P H Iverius S E Williams D K Strickland 《The Journal of biological chemistry》1992,267(36):25764-25767
Lipoprotein lipase (LPL), the major lipolytic enzyme involved in the conversion of triglyceride-rich lipoproteins to remnants, was found to compete with binding of activated alpha 2-macroglobulin (alpha 2M*) to the low density lipoprotein receptor-related protein (LRP)/alpha 2-macroglobulin receptor. Bovine milk LPL displaced both 125I-labeled alpha 2M* and 39-kDa alpha 2M receptor-associated protein (RAP) from the surface of cultured mutant fibroblasts lacking LDL receptors with apparent KI values at 4 degrees C of 6.8 and 30 nM, respectively. Furthermore, LPL inhibited the cellular degradation of 125I-alpha 2M* at 37 degrees C. Because both alpha 2M* and RAP interact with LRP, these data suggest that LPL binds specifically to this receptor. This was further supported by observing that an immunoaffinity-isolated polyclonal antibody against LRP blocked cellular degradation of 125I-LPL in a dose-dependent manner. In addition, 125I-LPL bound to highly purified LRP in a solid-phase assay with a KD of 18 nM, and this binding could be partially displaced with alpha 2M* (KI = 7 nM) and RAP (KI = 3 nM). Taken together, these data establish that LPL binds with high affinity to LRP and undergoes LRP-mediated cellular uptake. The implication of these findings for lipoprotein catabolism in vivo may be important if LRP binding is preserved when LPL is attached to lipoproteins. If so, LPL might facilitate LRP-mediated clearance of lipoproteins. 相似文献
2.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. 总被引:20,自引:0,他引:20
M Z Kounnas R E Morris M R Thompson D J FitzGerald D K Strickland C B Saelinger 《The Journal of biological chemistry》1992,267(18):12420-12423
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2 MR/LRP) is a large cell-surface glycoprotein consisting of a 515-kDa and an 85-kDa polypeptide; this receptor is thought to be responsible for the binding and endocytosis of activated alpha 2-macroglobulin and apoE-enriched beta-very low density lipoprotein. A similar high molecular weight glycoprotein has been identified as a potential receptor for Pseudomonas exotoxin A (PE). We demonstrate that the alpha 2 MR/LRP and the PE-binding glycoprotein have a similar mobility upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and are immunologically indistinguishable. Furthermore, affinity-purified alpha 2 MR/LRP binds specifically to PE but not to a mutant toxin defective in its ability to bind cells. The 39-kDa receptor-associated protein, which blocks binding of ligands to alpha 2 MR/LRP, also prevents binding and subsequent toxicity of PE for mouse fibroblasts. The concentration of receptor-associated protein that was required to reduce binding and toxicity to 50% was approximately 14 nM, a value virtually identical to the KD measured for the interaction of receptor-associated protein with the purified receptor. Overall, the studies strongly suggest that the alpha 2 MR/LRP is responsible for internalizing PE. 相似文献
3.
Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. 总被引:23,自引:0,他引:23
D Olson J P?ll?nen G H?yer-Hansen E R?nne K Sakaguchi T C Wun E Appella K Dan? F Blasi 《The Journal of biological chemistry》1992,267(13):9129-9133
The role of the urokinase receptor (uPAR) in the internalization of the urokinase-plasminogen activator inhibitor type-1 (uPA.PAI-1) complex has been investigated. First, exploiting the species specificity of uPA binding, we show that mouse LB6 cells (that express a mouse uPAR) were unable to bind or degrade the human uPA.PAI-1 complex. On the other hand, LB6 clone 19 cells, which express a transfected human uPAR, degraded uPA.PAI-1 complexes with kinetics identical to the human monocytic U937 cells. We also show by immunofluorescence experiments with anti-uPA antibodies that in LB6 clone 19 cells, the uPA.PAI-1 complex is indeed internalized. While at 4 degrees C uPA fluorescence was visible at the cell surface, shift of the temperature to 37 degrees C caused a displacement of the immunoreactivity to the cytoplasmic compartment, with a pattern indicating lysosomal localization. If uPA.PAI-1 internalization/degradation is mediated by uPAR, inhibition of uPA.PAI-1 binding to uPAR should block degradation. Three different treatments, competition with the agonist amino-terminal fragment of uPA, treatment with a monoclonal antibody directed toward the binding domain of uPAR or release of uPAR from the cell surface with phosphatidylinositol-specific phospholipase C completely prevented uPA.PAI-1 degradation. The possibility that a serpin-enzyme complex receptor might be primarily or secondarily involved in the internalization process was excluded since a serpin-enzyme complex peptide failed to inhibit uPA.PAI-1 binding and degradation. Similarly, complexes of PAI-1 with low molecular mass uPA (33 kDa uPA), which lacks the uPAR binding domain, were neither bound nor degraded. Finally we also show that treatment of cells with uPA.PAI-1 complex caused a specific but partial down-regulation of uPAR. A similar result was obtained when PAI-1 was allowed to complex to uPA that had been previously bound to the receptor. The possibility therefore exists that the entire complex uPA.PAI-1-uPAR is internalized. All these data allow us to conclude that internalization of the uPA.PAI-1 complex is mediated by uPAR. 相似文献
4.
Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin B domain of vitronectin. 总被引:8,自引:0,他引:8
The interaction between type 1 plasminogen activator inhibitor (PAI-1) and fragments of vitronectin (Vn) was investigated. The PAI-1-binding domain was not destroyed when Vn was cleaved by treatment with either acid or CNBr. Acid-cleaved Vn was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by PAI-1 ligand binding. The smallest fragment (Mr 40,000) that retained PAI-1 binding function was sequenced and shown to contain the NH2 terminus of the molecule. Further cleavage of this fragment by treatment with CNBr generated a Mr 35,000 fragment (Pro52-Asp239) that did not interact with PAI-1, and a Mr 6,000 NH2-terminal fragment (Asp1-Met51) that spanned the somatomedin B domain and contained the RGD (cell binding) sequence. The purified Mr 6,000 fragment competed with immobilized Vn for PAI-1 binding, and formed complexes with activated PAI-1. These complexes could be immunoprecipitated by antibodies to PAI-1. Synthetic peptides containing the RGD sequence had no effect on the binding of this fragment to PAI-1. These results suggest that the cell-binding and PAI-1 binding sequences of Vn occupy distinct regions in the NH2-terminal somatomedin B domain of the molecule. 相似文献
5.
D A Owensby P A Morton T C Wun A L Schwartz 《The Journal of biological chemistry》1991,266(7):4334-4340
Catabolism of plasminogen activators by Hep G2 cells is mediated by a specific receptor which recognizes complexes of these serine proteases with their physiological inhibitor, plasminogen activator inhibitor type-1 (PAI-1). This catabolic process is initiated by interaction of exogenous plasminogen activators with bioactive PAI-1, which is secreted and localizes in an active form to the extracellular matrix (ECM) of Hep G2 cells. We now report that vitronectin (VN) mediates the specific binding of PAI-1 to the ECM of these cells. Purified bovine or human VN competes for specific binding of PAI-1 to Hep G2 ECM, and ligand blotting reveals specific binding of PAI-1 to ECM-associated VN. Hep G2 cells secrete both VN and PAI-1, and pulse-chase studies strongly suggest that these proteins associate only following secretion. Although Hep G2 cell-derived VN does not significantly bind to ECM in vitro, 30-40% of endogenous PAI-1 binds to the ECM, even in the presence of human serum, suggesting that ECM-associated VN is entirely derived from bovine serum. PAI-1 was localized by indirect immunofluorescence to ECM beneath cells and at cell margins, whereas VN exhibited a uniform distribution throughout the growth substratum. VN associated with the ECM may confer retention and bioactivity to PAI-1, potentially facilitating both pericellular regulation of plasmin generation and the rapid hepatic clearance of plasminogen activators. 相似文献
6.
Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. 总被引:8,自引:0,他引:8
M M Hussain F R Maxfield J Más-Oliva I Tabas Z S Ji T L Innerarity R W Mahley 《The Journal of biological chemistry》1991,266(21):13936-13940
The involvement of the low density lipoprotein receptor-related protein (LRP) in chylomicron remnant (CR) catabolism was investigated. Ligand blot analyses demonstrated that beta-very low density lipoproteins (beta-VLDL) incubated with apolipoprotein E (beta-VLDL+E) bound to the LRP and low density lipoprotein receptors, whereas active (receptor-binding) alpha 2-macroglobulin (alpha 2M) bound only to LRP partially purified from rat liver membranes. Iodinated beta-VLDL+E and active alpha 2M showed high affinity binding to the LRP/alpha 2M receptor of low density lipoprotein receptor-negative fibroblasts. The binding and degradation of radiolabeled alpha 2M by these cells were partially inhibited by beta-VLDL+E. Furthermore, alpha 2M interfered with the internalization of beta-VLDL+E and subsequent induction in the cholesterol esterification by these cells. These studies suggested that remnant lipoproteins and active alpha 2M compete for binding to the LRP/alpha 2M receptor. Next, we examined whether the LRP/alpha 2M receptor plays a role, in the presence of low density lipoprotein receptors, in the in vivo catabolism of CR in mice. In vivo studies demonstrated that the unlabeled active, but not the native, alpha 2M partially inhibited the plasma clearance and hepatic uptake of radiolabeled CR or apoE-enriched radiolabled CR. Likewise, apoE-enriched CR retarded the plasma clearance and hepatic uptake of radiolabeled active alpha 2M. These studies provide physiological evidence that the LRP/alpha 2M receptor may function as a CR receptor that removes CR from the plasma. 相似文献
7.
The overexpression of urokinase (uPA), which plays a key role in tumour invasion and metastasis, is an established prognostic marker and potential therapeutic target. Plasminogen activator inhibitor type 2 (PAI-2), an efficient and specific inhibitor of uPA, has been shown to selectively deliver potent cytotoxins to tumour cells. However, a direct quantitative analysis of both the inhibition kinetics and subsequent fate of PAI-2 upon interaction with cell-surface uPA has not been previously undertaken. In this study, we analysed specific PAI-2 binding to receptor-bound uPA on human breast and prostate cancer cell lines to directly measure inhibition kinetics. Cell-surface uPA:PAI-2 complex formation, which is reflective of complete uPA inhibition, was found to be very efficient (inactivation constant [K(I)] = 60-80 pM, depending on cell line used) and rapid (inactivation rate constant [k(inact)] = 0.32-0.47 min(-1) at 37 degrees C, depending on cell line used). To directly quantify and visualise cellular internalisation and localisation, we developed a novel assay based on the use of PAI-2 labelled with Alexa(488) fluorochrome and a polyclonal antibody to quench Alexa(488) fluorescence. The efficient and rapid formation of uPA:PAI-2 complexes was thus shown to be associated with specific and rapid internalisation of PAI-2, which could be localised within endosomes and lysosomes. PAI-2 was subsequently degraded, presumably within lysosomes. This study is the first to provide definitive evidence for uPA/uPAR-mediated PAI-2 endocytosis. 相似文献
8.
39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. 总被引:41,自引:0,他引:41
J Herz J L Goldstein D K Strickland Y K Ho M S Brown 《The Journal of biological chemistry》1991,266(31):21232-21238
A 39-kDa protein of unknown function has previously been reported to copurify with the low density lipoprotein receptor-related protein (LRP)/alpha 2-macroglobulin receptor. In this study we demonstrate that a recombinant 39-kDa fusion protein can reversibly bind to the 515-kDa subunit of the LRP/alpha 2-macroglobulin receptor. This interaction inhibits the binding and uptake of the receptor's two known ligands: 1) beta-migrating very low density lipoproteins activated by enrichment with apoprotein E and 2) alpha 2-macroglobulin activated by incubation with plasma proteases or methylamine. A potential in vivo role of the 39-kDa protein is to modulate the uptake of apoE-enriched lipoproteins and activated alpha 2-macroglobulin in hepatic and extrahepatic tissues. 相似文献
9.
U K Misra G Gawdi M Gonzalez-Gronow S V Pizzo 《The Journal of biological chemistry》1999,274(36):25785-25791
We have studied insulin-dependent regulation of macrophage alpha(2)-macroglobulin signaling receptors (alpha(2)MSR) and low density lipoprotein receptor-related protein/alpha(2)M receptors (LRP/alpha(2)MR) employing cell binding of (125)I-alpha(2)M*, inhibition of binding by receptor-associated protein (RAP) or Ni(2+), LRP/alpha(2)MR mRNA levels, and generation of second messengers. Insulin treatment increased the number of alpha(2)M* high (alpha(2)MSR) and low (LRP/alpha(2)MR) affinity binding sites from 1, 600 and 67,000 to 2,900 and 115,200 sites per cell, respectively. Neither RAP nor Ni(2+) blocked the binding of (125)I-alpha(2)M* to alpha(2)MSR on insulin- or buffer-treated cells, but they both blocked binding to LRP/alpha(2)MR. Insulin significantly increased LRP/alpha(2)MR mRNA levels in a dose- and time-dependent manner. Insulin-augmented (125)I-alpha(2)M* binding to macrophages was severely reduced by wortmannin, LY294002, PD98059, SB203580, or rapamycin. The increase in alpha(2)MSR receptor synthesis was reflected by augmented generation of IP(3) and increased [Ca(2+)](i) levels upon receptor ligation. Incubation of macrophages with wortmannin, LY294002, PD98059, SB203580, rapamycin, or antibodies against insulin receptors before insulin treatment and alpha(2)M* stimulation significantly reduced the insulin-augmented increase in IP(3) and [Ca(2+)](i) levels. Pretreatment of cells with actinomycin D or cycloheximide blocked the synthesis of new alpha(2)MSR. In conclusion, we show here that insulin coordinately regulates macrophage alpha(2)MSR and LRP/alpha(2)MR, utilizing both the PI 3-kinase and Ras signaling pathways to induce new synthesis of these receptors. 相似文献
10.
Transforming growth factor-beta induction of type-1 plasminogen activator inhibitor. Pericellular deposition and sensitivity to exogenous urokinase 总被引:33,自引:0,他引:33
The human tumor cell line HT-1080 was used as a model system to study the effects of transforming growth factor-beta (TGF beta) on polypeptide synthesis and proteolytic activity of malignant cells. Confluent cultures were exposed to TGF beta under serum-free conditions, and alterations in the production of proteins were examined by metabolic labeling and polypeptide analysis. TGF beta induced the synthesis and secretion of the Mr 47,000 endothelial type plasminogen activator inhibitor (PAI-1) as shown by reverse zymography, immunblotting, and immunoprecipitation analyses. TGF beta-induced PAI-1 was rapidly deposited in the growth substratum of the cells as shown by metabolic labeling and extraction of the cultures with sodium deoxycholate. Using pulse-chase experiments, we found a relatively fast turnover of substratum-associated PAI-1. Exogenously added urokinase released PAI-1 from the substratum even in the presence of the plasmin inhibitor aprotinin, suggesting a direct effect of urokinase. Immunoreactive complexes of higher molecular weight were subsequently detected in the medium. Epidermal growth factor, transforming growth factor-alpha, platelet-derived growth factor, and insulin did not elicit similar effects on the amount of PAI-1. TGF beta also inhibited the anchorage-independent growth of HT-1080 cells at the same concentrations at which it induced PAI-1. These results indicate that TGF beta can modulate the extracellular proteolytic activity of cultured cells by enhancing the secretion and deposition of PAI-1 into their microenvironment. It remains to be established whether TGF beta inhibition of anchorage-independent growth of these cells is associated with the induction of PAI-1. 相似文献
11.
D K Strickland J D Ashcom S Williams W H Burgess M Migliorini W S Argraves 《The Journal of biological chemistry》1990,265(29):17401-17404
Ten peptides, derived from human alpha 2-macroglobulin (alpha 2M) receptor by chemical or proteolytic digestion, were sequenced. Comparative analysis revealed that all of the resulting sequences were present within the cDNA-deduced structure of low density lipoprotein receptor-related protein (LRP) (Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gausepohl, H., and Stanley, K. K. (1988) EMBO J. 7, 4119-4127). The findings provide evidence that the alpha 2M receptor and LRP are the same molecule. Further evidence comes from immunoprecipitation experiments using a monoclonal antibody specific for the alpha 2M receptor that show this molecule, like LRP, to contain two polypeptides of approximately 420 and 85 kDa that are noncovalently associated. An additional component of this receptor system is a 39-kDa polypeptide that co-purifies with the alpha 2M receptor during affinity chromatography. Solid phase binding studies reveal that the 39-kDa polypeptide binds with high affinity (Kd = 18 nM) to the 420-kDa component of the alpha 2M receptor. The apparent identity of LRP and the alpha 2M receptor suggests that this molecule is a multifunctional receptor with the capacity to bind diverse biological ligands and highlights a possible relationship between two previously unrelated biological processes, lipid metabolism and proteinase regulation. 相似文献
12.
Type 1 plasminogen activator inhibitor (PAI-1) binds to the extracellular matrix of cultured bovine aortic endothelial cells. Bovine plasma and bovine lung extract contain protein(s) that bind to PAI-1 and prevent this interaction. One of these proteins was purified approximately 425-fold from ammonium sulfate-fractionated plasma using standard chromatographic procedures together with affinity chromatography on PAI-1-Sepharose. The final product consisted of a major polypeptide of Mr 65,000 and two minor polypeptides of Mr 80,000 and 57,000. NH2-terminal amino acid sequence analysis of the Mr 65,000 polypeptide revealed that it was homologous with vitronectin, and antiserum against this purified binding protein recognized vitronectin and vice versa. Immunological analysis using these antisera demonstrated that the three peptides were immunologically related, and that vitronectin was present in the extracellular matrix of bovine endothelial cells and also in bovine lung. 相似文献
13.
The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor 总被引:32,自引:0,他引:32
Segarini PR Nesbitt JE Li D Hays LG Yates JR Carmichael DF 《The Journal of biological chemistry》2001,276(44):40659-40667
Connective tissue growth factor (CTGF) expression is regulated by transforming growth factor-beta (TGF-beta) and strong up-regulation occurs during wound healing; in situ hybridization data indicate that there are high levels of CTGF expression in fibrotic lesions. Recently the binding parameters of CTGF to both high and lower affinity cell surface binding components have been characterized. Affinity cross-linking and SDS-polyacrylamide gel electrophoresis analysis demonstrated the binding of CTGF to a cell surface protein with a mass of approximately 620 kDa. We report here the purification of this protein by affinity chromatography on CTGF coupled to Sepharose and sequence information obtained by mass spectroscopy. The binding protein was identified as the multiligand receptor, low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP). The identification of LRP as a receptor for CTGF was validated by several studies: 1) binding competition with many ligands that bind to LRP, including receptor-associated protein; 2) immunoprecipitation of CTGF-receptor complex with LRP antibodies; and 3) cells that are genetically deficient for LRP were unable to bind CTGF. Last, CTGF is rapidly internalized and degraded and this process is LRP-dependent. In summary, our data indicate that LRP is a receptor for CTGF, and may play an important role in mediating CTGF biology. 相似文献
14.
The molecular basis for binding of alpha-macroglobulin-proteinase complexes to the human two-chain 500/85-kDa (alpha/beta) alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein was analyzed. Ligand blotting experiments showed that a 40-kDa protein, present in the affinity-purified alpha 2MR preparation, is bound to the alpha 2MR alpha-chain and released by heparin. Removal of the 40-kDa protein resulted in a 3-5-fold increase in binding of alpha 2M-trypsin. Nitrocellulose-immobilized pure two-chain alpha 2MR was incubated with human alpha 2M-trypsin, containing four identical subunits, and two monovalent ligands: rat alpha 1-inhibitor-3-chymotrypsin and the 18-kDa receptor binding fragment of the alpha 2M subunit. Binding of alpha 2M-trypsin to the alpha-chain of immobilized alpha 2MR was composed of a high (Kd = 40 pM at 4 degrees C) and a low (Kd = 2 nM) affinity component. alpha 1-Inhibitor-3-chymotrypsin bound to the same sites but with one component (Kd = 0.4 nM). Competition-inhibition experiments and dissociation experiments, using ligands with different valences, as well as experiments with alpha 2MR immobilized at different densities, led to the following model. The low (Kd = 2 nM) affinity of alpha 2M-proteinase is prevalent when only one of the four domains binds to alpha 2MR, i.e. when the receptor density is low or when neighboring receptors are occupied. The high (Kd = 40 pM) affinity is achieved by binding of at least two domains to adjacent receptors. 相似文献
15.
New insights into the size and stoichiometry of the plasminogen activator inhibitor type-1.vitronectin complex 总被引:1,自引:0,他引:1
Podor TJ Shaughnessy SG Blackburn MN Peterson CB 《The Journal of biological chemistry》2000,275(33):25402-25410
Plasminogen activator inhibitor-type 1 (PAI-1) is the primary inhibitor of endogenous plasminogen activators that generate plasmin in the vicinity of a thrombus to initiate thrombolysis, or in the pericellular region of cells to facilitate migration and/or tissue remodeling. It has been shown that the physiologically relevant form of PAI-1 is in a complex with the abundant plasma glycoprotein, vitronectin. The interaction between vitronectin and PAI-1 is important for stabilizing the inhibitor in a reactive conformation. Although the complex is clearly significant, information is vague regarding the composition of the complex and consequences of its formation on the distribution and activity of vitronectin in vivo. Most studies have assumed a 1:1 interaction between the two proteins, but this has not been demonstrated experimentally and is a matter of some controversy since more than one PAI-1-binding site has been proposed within the sequence of vitronectin. To address this issue, competition studies using monoclonal antibodies specific for separate epitopes confirmed that the two distinct PAI-1-binding sites present on vitronectin can be occupied simultaneously. Analytical ultracentrifugation was used also for a rigorous analysis of the composition and sizes of complexes formed from purified vitronectin and PAI-1. The predominant associating species observed was high in molecular weight (M(r) approximately 320,000), demonstrating that self-association of vitronectin occurs upon interaction with PAI-1. Moreover, the size of this higher order complex indicates that two molecules of PAI-1 bind per vitronectin molecule. Binding of PAI-1 to vitronectin and association into higher order complexes is proposed to facilitate interaction with macromolecules on surfaces. 相似文献
16.
17.
L Krimbou M Marcil J Davignon J Genest 《The Journal of biological chemistry》2001,276(35):33241-33248
The reaction of lecithin:cholesterol acyltransferase (LCAT) with high density lipoproteins (HDL) is of critical importance in reverse cholesterol transport, but the structural and functional pathways involved in the regulation of LCAT have not been established. We present evidence for the direct binding of LCAT to alpha(2)-macroglobulin (alpha(2)M) in human plasma to form a complex 18.5 nm in diameter. Forty percent of plasma LCAT-HDL was associated with alpha(2)M; moreover, most of the LCAT in cerebrospinal fluid and in the medium of cultured human hepatoma cell line was associated with alpha(2)M. Purified recombinant human LCAT (rLCAT) labeled with (125)I bound to native and methylamine-activated alpha(2)M (alpha(2)M-MA) in vitro in a time- and concentration-dependent manner, and this binding did not depend on the presence of lipid. rLCAT bound to alpha(2)M-MA with greater affinity than to alpha(2)M. Furthermore, rLCAT did not activate alpha(2)M as phosphatidylcholine-specific phospholipase C does. Reconstituted HDL particles (LpA-I) inhibited the binding of rLCAT to alpha(2)M more efficiently than native HDL(3) did. LCAT associated with alpha(2)M was enzymatically inactive under both endogenous and exogenous assay conditions. Purified rLCAT alone did not bind to low density lipoprotein receptor-related protein (LRP) as lipoprotein lipase (LPL) does; however, when rLCAT was combined with alpha(2)M-MA to form a complex, binding, internalization, and degradation of rLCAT took place in LRP-expressing cells (LRP (+/+)) but not in cells deficient in LRP (LRP (-/-)). It is concluded that the binding of LCAT to alpha(2)M inhibits its enzymatic activity. Furthermore, the finding supports the possibility that the LRP receptor can act in vivo to mediate clearance of the LCAT-alpha(2)M complex and may significantly influence the bioavailability of LCAT. 相似文献
18.
M E G?fvels G Coukos R Sayegh C Coutifaris D K Strickland J F Strauss 《The Journal of biological chemistry》1992,267(29):21230-21234
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) has several ligands including activated alpha 2-macroglobulin, pregnancy zone protein, and very low density lipoproteins enriched with apolipoprotein E. The diversity of ligands suggests a role for the alpha 2MR/LRP in a variety of processes including tissue remodeling and lipoprotein metabolism. We examined alpha 2MR/LRP in placental trophoblasts, invasive cells that also function in lipid transport and cholesterol metabolism. alpha 2MR/LRP protein was localized by immunohistochemistry in the syncytiotrophoblast of term placenta. Cytotrophoblasts did not stain prominently. alpha 2MR/LRP (protein and message) in primary cultures of human trophoblast cells increased as cytotrophoblasts differentiated into syncytiotrophoblast. 8-Bromo-cAMP prevented this increase and suppressed alpha 2MR/LRP expression. The cyclic nucleotide had similar suppressive effects on alpha 2MR/LRP in BeWo choriocarcinoma cells. In contrast, low density lipoprotein receptor gene expression was increased. We conclude that: 1) there is a differentiation-dependent pattern of alpha 2MR/LRP expression in the human trophoblast; 2) cAMP negatively regulates alpha 2MR/LRP; 3) there is an inverse relationship between alpha 2MR/LRP and low density lipoprotein receptor gene expression in trophoblast cells. 相似文献
19.
D J Ballance J M Marshall I R Cottingham J Steven S J Berry S A Cederholm-Williams A R Goodey M Courtney 《European journal of biochemistry》1992,207(1):177-183
The binding of urokinase-type plasminogen activator (uPA) to its specific cell-surface receptor (uPAR) localises the proteolytic cascade initiated by uPA to the pericellular environment. Inhibition of uPA activity or prevention of uPA binding to uPAR might have a beneficial effect on disease states wherein this activity is deregulated, e.g. cancer and some inflammatory diseases. To this end, a bifunctional hybrid molecule consisting of the uPAR-binding growth-factor domain of uPA (amino acids 1-47; GFuPA) at the N-terminus of plasminogen-activator inhibitor type 2 (PAI-2) was produced in Saccharomyces cerevisiae. The purified protein inhibited uPA with kinetics similar to placental or recombinant PAI-2 and was also found to bind to U937 cells and to FL amnion cells. GFuPA-PAI-2 competed with uPA, the N-terminal fragment of uPA and a proteolytic fragment of uPA (amino acids 4-43) in cell binding experiments, indicating that the molecule bound to the cells via uPAR. Hence, both the uPA-inhibitory and uPAR-binding domains of the hybrid molecule were functional, demonstrating the feasibility of the novel concept of introducing an unrelated, functional domain onto a member of the serine-protease-inhibitor superfamily. 相似文献
20.
Madsen DH Engelholm LH Ingvarsen S Hillig T Wagenaar-Miller RA Kjøller L Gårdsvoll H Høyer-Hansen G Holmbeck K Bugge TH Behrendt N 《The Journal of biological chemistry》2007,282(37):27037-27045
The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis of large collagen fragments. First, we show that collagen that has been pre-cleaved by a mammalian collagenase is taken up much more efficiently than intact, native collagen by uPARAP/Endo180-positive cells. Second, we demonstrate that this preference is governed by the acquisition of a gelatin-like structure by the collagen, occurring upon collagenase-mediated cleavage under native conditions. Third, we demonstrate that the growth of uPARAP/Endo180-deficient fibroblasts on a native collagen matrix leads to substantial extracellular accumulation of well defined collagen fragments, whereas, wild-type fibroblasts possess the ability to direct an organized and complete degradation sequence comprising both the initial cleavage, the endocytic uptake, and the intracellular breakdown of collagen. 相似文献