首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated the mRNA expression of the atrial natriuretic peptide (ANP) system (peptide and receptors) during water deprivation in the spinifex hopping mouse, Notomys alexis, a native of central and western Australia that is well adapted to survive in arid environments. Initially, ANP, NPR-A and NPR-C cDNAs (partial for receptors) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. Using a semi-quantitative multiplex PCR technique, the expression of cardiac ANP mRNA and renal ANP, NPR-A, and NPR-C mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control mice (access to water). The levels of ANP mRNA expression in the heart remained unchanged, but in the kidney ANP mRNA levels were increased in the 7-day water-deprived mice, and were significantly decreased in the 14-day water-deprived mice. NPR-A mRNA levels were significantly higher in 7-day water-deprived mice while no change for NPR-A mRNA expression was observed in 14-day water-deprived mice. No variation in NPR-C mRNA levels was observed. This study shows that water deprivation differentially affects the expression of the ANP system, and that renal ANP expression is more important than cardiac ANP in the physiological adjustment to water deprivation.  相似文献   

2.
The aim of this study was to compare, under resting conditions, the influence of chronic training in swimming or running on mean arterial pressure (MAP) and the involvement of the natriuretic peptide system in this response. Two-month-old male spontaneously hypertensive rats (SHR) were divided into three groups—sedentary (SD), swimming (SW) and running (RN)—and were trained for eight weeks under regimens of similar intensities. Atria tissue and plasma atrial natriuretic peptide (ANP) concentrations were measured by radioimmunoassay. ANP mRNA levels in the right and left atria as well as the natriuretic peptide receptors (NPR), NPR-A and NPR-C, mRNA levels in the kidney were determined by real-time PCR. Autoradiography was used to quantify NPR-A and NPR-C in mesenteric adipose tissue. Both training modalities, swimming and running, reduced the mean arterial pressure (MAP) of SHR. Swimming, but not running, training increased plasma levels of ANP compared to the sedentary group (< 0.05). Expression of ANP mRNA in the left atrium was reduced in the RN compared to the SD group (< 0.05). Expression of NPR-A and NPR-C in the kidneys of the SW group decreased significantly (< 0.05) compared to the SD group. Although swimming increased 125I-ANP binding to mesenteric adipose tissue, displacement by c-ANF was reduced, indicating a reduction of NPR-C. These results suggest that the MAP reduction induced by exercise in SHR differs in its mechanisms between the training modalities, as evidenced by the finding that increased levels of ANP were only observed after the swimming regimen.  相似文献   

3.
Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system in regulation of natriuretic peptide and NPR gene expression. The ascending aorta was banded in 84 rats during Hypnorm/Dormicum-isoflurane anesthesia; after 4 wk the rats were randomized to treatment with losartan or placebo. The left ventricle of the heart was removed 1, 2, or 4 wk later. Aortic banding increased left ventricular expression of NPR-A and NPR-C mRNA by 110% (P < 0.001) and 520% (P < 0.01), respectively, after 8 wk; as expected, it also increased the expression of ANP and BNP mRNAs. Losartan induced a slight reduction of left ventricular weight but did not affect the expression of mRNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle.  相似文献   

4.
Atrial natriuretic peptide (ANP) is an important regulator of blood pressure (BP). One of the mechanisms whereby ANP impacts BP is by stimulation of nitric oxide (NO) production in different tissues involved in BP control. We hypothesized that ANP-stimulated NO is impaired in the kidneys of spontaneously hypertensive rats (SHR) and this contributes to the development and/or maintenance of high levels of BP. We investigated the effects of ANP on the NO system in SHR, studying the changes in renal nitric oxide synthase (NOS) activity and expression in response to peptide infusion, the signaling pathways implicated in the signaling cascade that activates NOS, and identifying the natriuretic peptide receptors (NPR), guanylyl cyclase receptors (NPR-A and NPR-B) and/or NPR-C, and NOS isoforms involved. In vivo, SHR and Wistar-Kyoto rats (WKY) were infused with saline (0.05 ml/min) or ANP (0.2 μg·kg(-1)·min(-1)). NOS activity and endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) NOS expression were measured in the renal cortex and medulla. In vitro, ANP-induced renal NOS activity was determined in the presence of iNOS and nNOS inhibitors, NPR-A/B blockers, guanine nucleotide-regulatory (G(i)) protein, and calmodulin inhibitors. Renal NOS activity was higher in SHR than in WKY. ANP increased NOS activity, but activation was lower in SHR than in WKY. ANP had no effect on expression of NOS isoforms. ANP-induced NOS activity was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in kidney. The renal NOS response to ANP was reduced by G(i) protein and calmodulin inhibitors. We conclude that ANP interacts with NPR-C, activating Ca-calmodulin eNOS through G(i) protein. NOS activation also involves NPR-A/B. The NOS response to ANP was diminished in kidneys of SHR. The impaired NO system response to ANP in SHR participates in the maintenance of high blood pressure.  相似文献   

5.
Atrial natriuretic peptide receptor types A (NPR-A) and C (NPR-C) binding properties and functional characteristics in renal glomeruli have been investigated in deoxycorticosterone acetate (DOCA)-treated hypertensive Wistar-Kyoto (WKY) rats and their respective controls. We found that DOCA administration had no significant effect on the maximum binding capacity or the affinity of renal NPR-A and NPR-C. NPR-C is involved in the regulation of cAMP production. Our results indicate that the cAMP production by NPR-C is not altered in DOCA-induced hypertension, since ANP(1-28), CNP(1-22) and C-ANP, which specifically bind to NPR-C, show a similar inhibitory effect on cAMP production stimulated by the physiological agonist histamine in glomeruli from DOCA-treated rats and controls. Finally, we have found that DOCA-induced hypertension does not modify NPR-A or NPR-C expression in rat glomerular membranes. These findings indicate that NPR-A and NPR-C binding properties and NPR-C-mediated inhibition of cAMP generation remain unaltered in DOCA-treated rats.  相似文献   

6.
The expression of the natriuretic peptide system in the human ocular ciliary epithelium (CE) and in cultured nonpigmented (NPE) ciliary epithelial cells was examined. By RT-PCR and DNA sequencing, we demonstrated that the CE and NPE cells express mRNA for (i) ANP; (ii) BNP; (iii) NPR-A, NPR-B, and NPR-C receptors; and (iv) the neutral endopeptidase 24.11. Radioimmunoassay results indicate that BNP is secreted by cultured NPE cells at much higher levels than ANP. NPR-A and NPR-B receptors elicited a cGMP response to ANP, BNP, and CNP, in a rank order of potency (CNP > ANP >/= BNP), indicative that the NPR-B receptor is predominant in NPE cells. A71915, an inhibitor of NPR-A activity, attenuated (65-75%) cGMP response to ANP and BNP, but not to CNP. C-ANP4-23 elicited an inhibitory effect (30-37%) on basal levels of cAMP in NPE cells and on forskolin NPE-treated cells, indicative that the NPR-C receptor is functional in these cells. PMA induced, in NPE cells, a long-term downregulation (75-85%) of NPR-C receptor mRNA, but not of NPR-A or NPR-B receptor mRNA, suggesting a differential regulation of NPR-C receptor mRNA via activation of PKC. Collectively, our data provide molecular evidence that all the components of the natriuretic peptide system with the exception of CNP are coexpressed in the ocular NPE ciliary epithelial cells, where they may function as local autocrine/paracrine modulators to influence eye pressure.  相似文献   

7.
Receptor-specific variants of atrial natriuretic peptide (ANP) were selected from libraries of filamentous phage particles that displayed single copies of random ANP mutants fused to gene III protein. These ANP variants were differentially selected by binding to immobilized natriuretic peptide receptor A (NPR-A) over competing receptor C (NPR-C) in solution. This method also selected ANP variants with improved secretion expression in Escherichia coli. Several of the identified mutations were combined to produce an efficiently expressed ANP analog that was as potent as wild-type ANP in stimulating NPR-A guanylyl cyclase activity but resistant to inactivation mediated by NPR-C. Such NPR-A-selective analogs should be useful for correlating the various activities of ANP to the relevant receptor and may also be more potent therapeutics in the targeting of NPR-A.  相似文献   

8.
9.
Atrial natriuretic peptide (ANP), brain type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) comprise a family of natriuretic peptides that mediate their biological effects through three natriuretic peptide receptor subtypes, NPR-A (ANP, BNP), NPR-B (CNP) and NPR-C (ANP, BNP, CNP). Several reports have provided evidence for the expression of ANP and specific binding sites for ANP in the pancreas. The purpose of this study was to identify the ANP receptor subtype and to localize its expression to a specific cell type in the human pancreas. NPR-C immunoreactivity, but neither ANP nor NPR-A, was detected in human islets by immunofluorescent staining. No immunostaining was observed in the exocrine pancreas or ductal structures. Double-staining revealed that NPR-C was expressed mainly in the glucagon-containing alpha cells. NPR-C mRNA and protein were detected in isolated human islets by RT-PCR and Western blot analysis, respectively. NPR-C expression was also detected by immunofluorescent staining in glucagonoma but not in insulinoma. ANP, as well as BNP and CNP, stimulated glucagon secretion from perifused human islets (1,111 ± 55% vs. basal [7.3 fmol/min]; P < 0.001). This response was mimicked by cANP(4–23), a selective agonist of NPR-C. In conclusion, the NPR-C receptor is expressed in normal and neoplastic human alpha cells. These findings suggest a role for natriuretic peptides in the regulation of glucagon secretion from human alpha cells.  相似文献   

10.
Systemic clearance of atrial natriuretic peptide (ANP) is in part due to neutral endopeptidase (NEP) proteolysis and natriuretic peptide receptor-C (NPR-C) mediated endocytosis. Biological responses to ANP are primarily mediated by the membrane guanylyl cyclase-A/natriuretic peptide receptor-A (NPR-A). Analogs of ANP selective for NPR-A and/or resistant to NEP may have increased activity in those tissues where NPR-C and NEP are coexpressed with NPR-A. The analog of ANP termed vANP; [(R3D, G9T, R11S, M12L, G16R)ANP] is selective for human NPR-A with at least 10,000 fold reduction in affinity for human NPR-C. We report that rat NPR-A is insensitive to 10 nM vANP, demonstrating the limitations of this species in evaluating human therapeutic candidates. As an alternative approach we tested the binding and potency of receptor-selective and NEP-resistant ANP analogs in rhesus monkey tissues. Competition binding studies with a simplified version of vANP, sANP [(G9T, R11S, G16R)rANP], in rhesus monkey kidney and lung membrane preparations shows displacement of 125I-ANP from only a fraction of the total ANP receptor population, 30 and 85%, respectively. The remaining ANP binding sites can be occupied with the NPR-C selective ligand cANP(4-23). These data strongly suggest that only two classes of ANP receptor are present in these membrane preparations, NPR-A and NPR-C. The NEP resistant sANP derivative called sANP(TAPR) was 8 fold more potent (ED50 = 0.6 nM) than rANP (ED50 = SnM) in stimulating cGMP production in the lung membrane preparation. Our results demonstrate that the rhesus monkey natriuretic peptide receptors reflect the pharmacology of the human receptors, and that this species may be suitable to determine the role of NPR-C and NEP in peptide clearance and attenuating functional responses.  相似文献   

11.
Atrial natriuretic peptide (ANP) induces activation of nitric oxide-synthase (NOS). Aims: to identify the isoform of NOS involved in ANP effects, to study whether ANP modifies NOS expression and to investigate the signaling pathways and receptors involved in NOS stimulation. NOS activation induced by ANP would be mediated by endothelial NOS (eNOS) since neuronal or inducible NOS inhibition did not alter ANP effect. The peptide induced no changes in eNOS protein expression. NOS activity stimulated by ANP, in the kidney, aorta and left ventricle, was partially abolished by the NPR-A/B antagonist, as well as PKG inhibition, but no difference in atria was observed. 8-Br-cGMP partially mimicked the effect of ANP on NOS in all tissues. NOS stimulation by ANP in atria disappeared when G protein was inhibited, but this effect was partial in the other tissues. Calmodulin antagonist abolished NOS stimulation via ANP. Inhibition of the PLC, PKC or PI3 kinase/Akt pathway failed to alter NOS activation induced by ANP. ANP would activate eNOS in the aorta, heart and kidney without modifying the expression of the enzyme. ANP would interact with NPR-C coupled via G proteins leading to the activation of Ca(2+)-calmodulin-dependent NOS in atria; while in ventricle, aorta and kidney, ANP could also interact with NPR-A/B, increasing cGMP, which in turns activates PKG to stimulate eNOS.  相似文献   

12.
Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na(+)-K(+) pump, we examined whether atrial natriuretic peptide (ANP) regulates the pump. We voltage clamped rabbit ventricular myocytes and identified electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange and normalized for membrane capacitance) as the shift in membrane current induced by 100 micromol/l ouabain. Ten nanomoles per liter ANP stimulated the Na(+)-K(+) pump when the intracellular compartment was perfused with pipette solutions containing 10 mmol/l Na(+) but had no effect when the pump was at near maximal activation with 80 mmol/l Na(+) in the pipette solution. Stimulation was abolished by inhibition of cGMP-activated protein kinase with KT-5823, nitric oxide (NO)-activated guanylyl cyclase with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ), or NO synthase with N(G)-nitro-L-arginine methyl ester (L-NAME). Since synthesis of cGMP by NPR-A and NPR-B is not NO dependent or ODQ sensitive, we exposed myocytes to AP-811, a highly selective ligand for the NPR-C "clearance" receptor. It abolished ANP-induced pump stimulation. Conversely, the selective NPR-C agonist ANP(4-23) reproduced stimulation. The stimulation was blocked by l-NAME. To examine NO production in response to ANP(4-23), we loaded myocytes with the NO-sensitive fluorescent dye diacetylated diaminofluorescein-2 and examined them by confocal microscopy. ANP(4-23) induced a significant increase in fluorescence, which was abolished by L-NAME. We conclude that NPs stimulate the Na(+)-K(+) pump via an NPR-C and NO-dependent pathway.  相似文献   

13.
Atrial natriuretic peptide in hypoxia   总被引:4,自引:0,他引:4  
Chen YF 《Peptides》2005,26(6):1068-1077
A growing number of mammalian genes whose expression is inducible by hypoxia have been identified. Among them, atrial natriuretic peptide (ANP) synthesis and secretion is increased during hypoxic exposure and plays an important role in the normal adaptation to hypoxia and in the pathogenesis of cardiopulmonary diseases, including chronic hypoxia-induced pulmonary hypertension and vascular remodeling, and right ventricular hypertrophy and right heart failure. This review discusses the roles of ANP and its receptors in hypoxia-induced pulmonary hypertension. We and other investigators have demonstrated that ANP gene expression is enhanced by exposure to hypoxia and that the ANP so generated protects against the development of hypoxic pulmonary hypertension. Results also show that hypoxia directly stimulates ANP gene expression and ANP release in cardiac myocytes in vitro. Several cis-responsive elements of the ANP promoter are involved in the response to changes in oxygen tension. Further, the ANP clearance receptor NPR-C, but not the biological active NPR-A and NPR-B receptors, is downregulated in hypoxia adapted lung. Hypoxia-sensitive tyrosine kinase receptor-associated growth factors, including fibroblast growth factor (FGF) and platelet derived growth factor (PDGF)-BB, but not hypoxia per se, inhibit NPR-C gene expression in pulmonary arterial smooth muscle cells in vitro. The reductions in NPR-C in the hypoxic lung retard the clearance of ANP and allow more ANP to bind to biological active NPR-A and NPR-B in the pulmonary circulation, relaxing preconstricted pulmonary vessels, reducing pulmonary arterial pressure, and attenuating the development of hypoxia-induced pulmonary hypertension and vascular remodeling.  相似文献   

14.
Kim CS  Choi JS  Park JW  Bae EH  Ma SK  Lee J  Kim SW 《Regulatory peptides》2012,174(1-3):65-70
Cisplatin is a chemotherapeutic agent used for treating solid tumors. However, nephrotoxicity is the dose-limiting factor in its clinical use. The present study was aimed to determine whether altered regulation of the local nitric oxide (NO) and natriuretic peptide (NP) systems is involved in the pathogenesis of cisplatin-induced nephropathy. Cisplatin (6 mg/kg) was injected intraperitoneally into male Sprague-Dawley rats. The control group was not treated with cisplatin. Expression levels of nitric oxide synthase (NOS), nitrotyrosine, soluble guanylyl cyclase and neutral endopeptidase (NEP) in the kidneys were determined 4 days after treatment by semiquantitative immunoblotting. mRNA expression of NPs and natriuretic peptide receptors (NPRs) was determined by real-time polymerase chain reaction. The activities of soluble and particulate guanylyl cyclase were determined by measuring the amount of cyclic 3',5'-guanosine monophosphate (cGMP) generated in responses to sodium nitroprusside and atrial natriuretic peptide (ANP), respectively. In the test rats, creatinine clearance was decreased, while sodium and water excretion were increased. The expression of inducible NOS (iNOS) and nitrotyrosine was increased in the cortex/outer stripe of outer medullar and inner medullar, while that of endothelial and neuronal NOS was decreased in the inner medullar. Excretion of NO metabolites was increased in these rats. The catalytic activity of soluble guanyly cyclase was blunted in the papilla after cisplatin was administered. The mRNA expression of ANP, brain natriuretic peptide, and C-type natriuretic peptide was increased, while that of NPR-A and NPR-C were decreased in the test rats. The catalytic activity of soluble and particulate guanylyl cyclase in the papilla was blunted after cisplatin was administered. In conclusion, increased production of NO by iNOS may contribute to cytotoxic injury, resulting in cisplatin-induced nephropathy, while the up-regulation of renal natriuretic peptide synthesis together with the down-regulation of NEP and NPR-C may contribute to the natriuresis and diuresis seen in cisplatin-induced nephropathy.  相似文献   

15.
16.
Cardiovascular homeostasis and blood pressure regulation are reliant, in part, on interactions between natriuretic peptide (NP) hormones and natriuretic peptide receptors (NPR). The C-type NPR (NPR-C) is responsible for clearance of NP hormones from the circulation, and displays a cross-reactivity for all NP hormones (ANP, BNP, and CNP), in contrast to other NPRs, which are more restricted in their specificity. In order to elucidate the structural determinants for the binding specificity and cross-reactivity of NPR-C with NP hormones, we have determined the crystal structures of the complexes of NPR-C with atrial natriuretic peptide (ANP), and with brain natriuretic peptide (BNP). A structural comparison of these complexes, with the previous structure of the NPR-C/CNP complex, reveals that NPR-C uses a conformationally inflexible surface to bind three different, highly flexible, NP ligands. The complex structures support a mechanism of rigid promiscuity rather than conformational plasticity by the receptor. While ANP and BNP appear to adopt similar receptor-bound conformations, the CNP structure diverges, yet shares sets of common receptor contacts with the other ligands. The degenerate versus selective hormone recognition properties of different NPRs appears to derive largely from two cavities on the receptor surfaces, pocket I and pocket II, that serve as anchoring sites for hormone side-chains and modulate receptor selectivity.  相似文献   

17.
Ischemia-reperfusion (IR) causes human lung injury in association with the release of atrial and brain natriuretic peptides (ANP and BNP), but the role of ANP/BNP in IR lung injury is unknown. ANP and BNP bind to natriuretic peptide receptor-A (NPR-A) generating cGMP and to NPR-C, a clearance receptor that can decrease intracellular cAMP. To determine the role of NPR-A signaling in IR lung injury, we administered the NPR-A blocker anantin in an in vivo SWR mouse preparation of unilateral lung IR. With uninterrupted ventilation, the left pulmonary artery was occluded for 30 min and then reperfused for 60 or 150 min. Anantin administration decreased IR-induced Evans blue dye extravasation and wet weight in the reperfused left lung, suggesting an injurious role for NPR-A signaling in lung IR. In isolated mouse lungs, exogenous ANP (2.5 nM) added to the perfusate significantly increased the filtration coefficient sevenfold only if lungs were subjected to IR. This effect of ANP was also blocked by anantin. Unilateral in vivo IR increased endogenous plasma ANP, lung cGMP concentration, and lung protein kinase G (PKG(I)) activation. Anantin enhanced plasma ANP concentrations and attenuated the increase in cGMP and PKG(I) activation but had no effect on lung cAMP. These data suggest that lung IR triggered ANP release and altered endothelial signaling so that NPR-A activation caused increased pulmonary endothelial permeability.  相似文献   

18.
Bae EH  Ma SK  Lee J  Kim SW 《Regulatory peptides》2011,170(1-3):31-37
The present study was aimed to determine whether there is an altered role of local nitric oxide (NO) and atrial natriuretic peptide (ANP) systems in the kidney in association with the angiotensin (Ang) II-induced hypertension. Male Sprague-Dawley rats were used. Ang II (100 ng·min?1·kg?1) was infused through entire time course. Thirteenth day after beginning the regimen, kidneys were taken. The protein expression of NO synthase (NOS) and nitrotyrosine was determined by semiquantitative immunoblotting. The mRNA expression of components of ANP system was determined by real-time polymerase chain reaction. The activities of soluble and particulate guanylyl cyclases were determined by the amount of cGMP generated in responses to sodium nitroprusside and ANP, respectively. There developed hypertension and decreased creatinine clearance in the experimental group. The protein expression of eNOS, nNOS and nitrotyrosine was increased in the cortex, while that of iNOS remained unaltered. The urinary excretion of NO increased in Ang II-induced hypertensive rats. The catalytic activity of soluble guanylyl cyclase was blunted in the glomerulus in Ang II-induced hypertensive rats. The mRNA expression of ANP was increased in Ang II-induced hypertensive rats. Neither the expression of NPR-A nor that of NPR-C was changed. The protein expression of neutral endopeptidase was decreased and the activity of particulate guanylyl cyclase was blunted in the glomerulus and papilla in Ang II-induced hypertensive rats. In conclusion, the synthesis of NO and ANP was increased in the kidney of Ang II-induced hypertension, while stimulated cGMP response was blunted. These results suggest desensitization of guanylyl cyclase in the kidney of Ang II-induced hypertensive rats, which may contribute to the associated renal vasoconstriction and hypertension.  相似文献   

19.
The present study was aimed to determine whether there is an altered role of local nitric oxide (NO), atrial natriuretic peptide (ANP) and cyclooxygenase (COX) systems in the kidney in association with the aldosterone escape. Male Sprague–Dawley rats were used. Aldosterone (200 μg/day) was infused through entire time course. The control group was kept on a low sodium diet (0.02 mEq/day), and the experimental group was supplied with a higher sodium diet (2.0 mEq/day). Four days after beginning the regimen, the kidneys were taken. The protein expression of NO synthase (NOS) and COX isoforms was determined by semiquantitative immunoblotting. The mRNA expression of components of ANP system was determined by real-time polymerase chain reaction. The activities of soluble and particulate guanylyl cyclases were determined by the amount of cGMP generated in responses to sodium nitroprusside and ANP, respectively. There developed aldosterone escape in the experimental group. Accordingly, the renal content and the urinary excretion of NO increased. The expression of nNOS was increased in the inner medulla. Neither the expression of eNOS nor that of iNOS was changed. The expression and the catalytic activity of soluble guanylyl cyclase remained unaltered. The mRNA expression of ANP was increased. Neither the expression of NPR-A or NPR-C nor the activity of particulate guanylyl cyclase was altered in the papilla. The protein expression of COX-2 was increased in the inner medulla, while that of COX-1 remained unchanged. In conclusion, the upregulation of nNOS, ANP, and COX-2 may be causally related with the aldosterone escape.  相似文献   

20.
Atrial natriuretic peptide (ANP) exerts its hypotensive, natriuretic and diuretic effects, almost in part, through the activation of nitric oxide synthase (NOS). The aim was to investigate the natriuretic receptor type and the signaling cascade involved in NOS activation induced by ANP. Male Wistar rats were sacrificed and NOS activity was determined in kidney, aorta and heart with L-[U14C]-arginine, as substrate. ANP and cANP (4-23), a selective NPR-C ligand, increased NOS activity in all tissues. ANP induced a more marked activation in aorta and kidney than cANP (4-23), but no difference in atria NOS activation was observed. NOS activity induced by both peptides was blunted by nifedipine (L-type channel blocker) and calmidazolium (calmodulin antagonist) in heart and aorta. In kidney, nifedipine and calmidazolium abolished NOS activity stimulated by cANP (4-23) but only partially inhibited NOS activity elicited by ANP. Gi inhibition with pertussis toxin abolished NOS activity stimulated by ANP and cANP in atria but only partially inhibited the increased NOS activity induced by ANP and cANP in kidney, aorta and ventricle. Our results show that NPR-C receptor would mediate the activation of NOS by ANP in atria. In kidney, aorta and ventricle, NOS activation would also involve NPR-A and/or B. ANP would interact with NPR-C coupled via Gi to activation Ca2+ -dependent NOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号