首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Zhang Z  Ma C  Pornillos O  Xiu X  Chang G  Saier MH 《Biochemistry》2007,46(17):5218-5225
The Bacillus subtilis genome contains two tandem genes, ebrA and ebrB, which encode two homologues of the SMR family of multidrug efflux transporters. The sequences of EbrA and EbrB are highly similar to each other and to that of EmrE, the prototypical SMR transporter of Escherichia coli. Drug resistance profiling and drug binding experiments showed that the presence of both EbrA and EbrB is required for proper transport function. EbrA and EbrB directly interact and combine to form a functional transporter. They likely form a heterodimer in analogy to the EmrE homodimer. Mutagenesis experiments indicate that the conserved membrane-embedded glutamates in the first transmembrane helices of both EbrA and EbrB are required for multidrug efflux activity. However, the two glutamates are nonequivalent since EbrA E15 is required for substrate binding while EbrB E14 is not. Our studies support a model in which functional residues in EbrAB are relegated to at least two sets that participate in distinct steps of the active drug transport process.  相似文献   

2.
EbrAB in Bacillus subtilis belongs to a novel small multidrug resistance (SMR) family of multidrug efflux pumps. EmrE in Escherichia coli, a representative of SMR, functions as a homo-oligomer in the membrane. On the other hand, EbrAB requires a hetero-oligomeric configuration consisting of two polypeptides, EbrA and EbrB. Although both polypeptides have a high sequence similarity, expression of either single polypeptide does not confer the multidrug-resistance. We performed mutation studies on EbrA and B to determine why EbrAB requires the hetero-oligomerization. Mutants of EbrA and B lacking both the hydrophilic loops and the C-terminus regions conferred the multidrug-resistance solely by each protein. This suggests that the hydrophilic loops and the C-terminus regions constrain them to their respective conformations upon the formation of the functional hetero-oligomer.  相似文献   

3.
EbrAB is a multidrug-resistance transporter in Bacillus subtilis that belongs to the small multidrug resistance, and requires two polypeptides of both EbrA and EbrB, implying that it functions in the hetero-dimeric state. In this study, we investigated the transmembrane topologies of EbrA and EbrB. Various single-cysteine mutants were expressed in Escherichia coli cells, and the efflux activity was measured. Only mutants having a high activity were used for the topology experiments. The reactivity of a membrane impermeable NEM-fluorescein against the single cysteine of these fully functional mutants was examined when this reactive fluorophore was applied either from the outside or both sides of the cell membrane or in the denatured state. The results clearly showed that EbrA and EbrB have the opposite orientation within the membrane or an anti-parallel configuration.  相似文献   

4.
EbrAB in Bacillus subtilis belongs to a novel small multidrug resistance (SMR) family of multidrug efflux pumps. EmrE in Escherichia coli, a representative of SMR, functions as a homo-oligomer in the membrane. On the other hand, EbrAB requires a hetero-oligomeric configuration consisting of two polypeptides, EbrA and EbrB. Although both polypeptides have a high sequence similarity, expression of either single polypeptide does not confer the multidrug-resistance. We performed mutation studies on EbrA and B to determine why EbrAB requires the hetero-oligomerization. Mutants of EbrA and B lacking both the hydrophilic loops and the C-terminus regions conferred the multidrug-resistance solely by each protein. This suggests that the hydrophilic loops and the C-terminus regions constrain them to their respective conformations upon the formation of the functional hetero-oligomer.  相似文献   

5.
We cloned a gene responsible for norfloxacin resistance from the chromosomal DNA of Haemophilus influenzae Rd, and designated the gene as hmrM. HmrM showed sequence similarity with NorM of Vibrio parahaemolyticus and YdhE of Escherichia coli and others that belong to the MATE family multidrug efflux pumps. The recombinant plasmid carrying the hmrM gene conferred elevated resistance not only to norfloxacin but also to acriflavine, 4 ', 6-diamidino-2-phenylindole, doxorubicin, ethidium bromide, tetraphenylphosphonium chloride, Hoechst 33342, daunomycin, berberine, and sodium deoxycholate in Escherichia coli KAM32, a drug-hypersensitive strain. We observed an Na+-dependent efflux of ethidium and an ethidium-induced efflux of Na+ in E. coli KAM32 cells harboring the plasmid carrying the hmrM gene. These results indicate that HmrM is an Na+/drug antiporter-type multidrug efflux pump. A difference in substrate preference was observed between HmrM, NorM, and YdhE.  相似文献   

6.
We cloned the gene PA1361 (we designated the gene pmpM), which seemed to encode a multidrug efflux pump belonging to the MATE family, of Pseudomonas aeruginosa by the PCR method using the drug-hypersensitive Escherichia coli KAM32 strain as a host. Cells of E. coli possessing the pmpM gene showed elevated resistance to several antimicrobial agents. We observed energy-dependent efflux of ethidium from cells possessing the pmpM gene. We found that PmpM is an H(+)-drug antiporter, and this finding is the first reported case of an H(+)-coupled efflux pump in the MATE family. Disruption and reintroduction of the pmpM gene in P. aeruginosa revealed that PmpM is functional and that benzalkonium chloride, fluoroquinolones, ethidium bromide, acriflavine, and tetraphenylphosphonium chloride are substrates for PmpM in this microorganism.  相似文献   

7.
The Bacillus subtilis genome encodes seven homologues of the small multidrug resistance (SMR) family of drug efflux pumps. Six of these homologues are paired in three distinct operons, and coexpression in Escherichia coli of one such operon, ykkCD, but not expression of either ykkC or ykkD alone, gives rise to a broad specificity, multidrug-resistant phenotype including resistance to cationic, anionic, and neutral drugs.  相似文献   

8.
There are six putative genes for multidrug and toxic compound extrusion (MATE) family multidrug efflux pumps in the chromosome of Vibrio cholerae. We have so far analyzed two MATE family pumps in V. cholerae non-O1 NCTC4716. Here we cloned four remaining genes for putative MATE family efflux pumps by the PCR method from this microorganism and designated them as vcmB, vcmD, vcmH and vcmN. Each one of the four genes was introduced and expressed in the drug hypersusceptible host Escherichia coli KAM32 cells. We observed elevated MICs of multiple antimicrobial agents, such as fluoroquinolones, aminoglycosides, ethidium bromide and Hoechst 33342 in the transformants. Energydependent efflux of substrate was observed with the transformed cells. We found that efflux activities of VcmB, VcmD and VcmH were Na+-dependent, but that of VcmN was Na+-independent. Thus, all six of the MATE family multidrug efflux pumps of V. cholerae non-O1 have been characterized. We also found that all six genes were expressed in cells of V. cholerae non-O1.  相似文献   

9.
Proton-dependent multidrug efflux systems.   总被引:26,自引:0,他引:26       下载免费PDF全文
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.  相似文献   

10.
We cloned a gene, ECL_03329, from the chromosome of Enterobacter cloacae ATCC13047, using a drug-hypersensitive Escherichia coli KAM32 cell as the host. We show here that this gene, designated as emmdR, is responsible for multidrug resistance in E. cloacae. E. coli KAM32 host cells containing the cloned emmdR gene (KAM32/pEMMDR28) showed decreased susceptibilities to benzalkonium chloride, norfloxacin, ciprofloxacin, levofloxacin, ethidium bromide, acriflavine, rhodamine6G, and trimethoprim. emmdR-deficient E. cloacae cells (EcΔemmdR) showed increased susceptibilities to several of the antimicrobial agents tested. EmmdR has twelve predicted transmembrane segments and some shared identity with members of the multidrug and toxic compound extrusion (MATE) family of transporters. Study of the antimicrobial agent efflux activities revealed that EmmdR is an H+-drug antiporter but not a Na+ driven efflux pump. These results indicate that EmmdR is responsible for multidrug resistance and pumps out quinolones from E. cloacae.  相似文献   

11.
The small multidrug resistance (SMR) protein family is a bacterial multidrug transporter family. As suggested by their title, SMR proteins are composed of four transmembrane alpha-helices of approximately 100-140 amino acids in length. Since their designation as a family, many homologues have been identified and characterized both structurally and functionally. In this review the topology, structure, drug resistance, drug binding, and transport mechanisms of the entire SMR protein family are examined. Additionally, updated bioinformatic analysis of predicted and characterized SMR protein family members was also conducted. Based on SMR sequence alignments and phylogenetic analysis of current members, we propose that this small multidrug resistance transporter family should be expanded into three subclasses: (i) the small multidrug pumps (SMP), (ii) suppressor of groEL mutation proteins (SUG), and a third group (iii) paired small multidrug resistance proteins (PSMR). The roles of these three SMR subclasses are examined, and the well-characterized members, such as Escherichia coli EmrE and SugE, are described in terms of their function and structural organization.  相似文献   

12.
We cloned a DNA fragment responsible for drug resistance from chromosome of Vibrio cholerae non-O1. Nucleotide sequence analysis of this fragment revealed the presence of a single open reading frame encoding a protein consisting of 445 amino acid residues. We designated the gene as vcrM. Hydropathy analysis of the deduced amino acid sequence of VcrM suggests the presence of 12 trans-membrane segments. A dendrogram showed that VcrM is a member of the DinF-subfamily within the MATE family of multidrug efflux pumps. Expression of the cloned vcrM gene in drug-hypersensitive Escherichia coli KAM32 cells made them resistant to acriflavine, 4', 6-diamidino-2-phenylindole, Hoechst 33342, rhodamine 6G, tetraphenylphosphonium chloride (TPPCl) and ethidium bromide. Efflux of acriflavine due to VcrM was dependent on Na+ or Li+. Moreover, Na+ efflux was observed with VcrM when TPPCl was added to Na+-loaded cells. Therefore, we conclude that VcrM is a Na+/drug antiporter-type multidrug efflux pump.  相似文献   

13.
NorM of Vibrio parahaemolyticus apparently is a new type of multidrug efflux protein, with no significant sequence similarity to any known transport proteins. Based on the following experimental results, we conclude that NorM is an Na(+)-driven Na(+)/drug antiporter. (i) Energy-dependent ethidium efflux from cells possessing NorM was observed in the presence of Na(+) but not of K(+). (ii) An artificially imposed, inwardly directed Na(+) gradient elicited ethidium efflux from cells. (iii) The addition of ethidium to cells loaded with Na(+) elicited Na(+) efflux. Thus, NorM is an Na(+)/drug antiporting multidrug efflux pump, the first to be found in the biological world. Judging from the similarity of the NorM sequence to those of putative proteins in sequence databases, it seems that Na(+)/drug antiporters are present not only in V. parahaemolyticus but also in a wide range of other organisms.  相似文献   

14.
The sequenced members of a novel family of small, hydrophobic, bacterial multidrug-resistance efflux proteins, which we have designated the small multidrug resistance (SMR) protein family, are identified and analysed. Two distinct clusters of proteins were identified within this family: (i) small multidrug efflux systems; and (ii) Sug proteins, potentially involved in the suppression of groEL mutations. Hydropathy and residue distribution analyses of this family suggest a structural model in which the polypeptide chain spans the membrane four times as mildly amphipathic α-helices. The roles of specific residues, a possible mechanistic model of drug efflux, and the primary physiological role(s) of the SMR proteins are discussed.  相似文献   

15.
The small multidrug resistance (SMR) protein family is a bacterial multidrug transporter family. As suggested by their title, SMR proteins are composed of four transmembrane α-helices of approximately 100-140 amino acids in length. Since their designation as a family, many homologues have been identified and characterized both structurally and functionally. In this review the topology, structure, drug resistance, drug binding, and transport mechanisms of the entire SMR protein family are examined. Additionally, updated bioinformatic analysis of predicted and characterized SMR protein family members was also conducted. Based on SMR sequence alignments and phylogenetic analysis of current members, we propose that this small multidrug resistance transporter family should be expanded into three subclasses: (i) the small multidrug pumps (SMP), (ii) suppressor of groEL mutation proteins (SUG), and a third group (iii) paired small multidrug resistance proteins (PSMR). The roles of these three SMR subclasses are examined, and the well-characterized members, such as Escherichia coli EmrE and SugE, are described in terms of their function and structural organization.  相似文献   

16.
Resistance Nodulation cell Division (RND) efflux transporters are thought to be involved in mediating multidrug resistance in Gram-negative bacteria, including Vibrio cholerae non-O1. There are six operons for putative RND-type efflux transporters present in the chromosome of V. cholerae O1 including two operons, vexAB and vexCD, which had already been identified. All of the six operons were cloned from V. cholerae non-O1, NCTC4716 by the PCR method, introduced, and expressed in cells of drug hypersusceptible Escherichia coli KAM33 (DeltaacrAB, DeltaydhE). Only vexEF conferred elevated minimum inhibitory concentrations (MICs) of some antimicrobial agents in the E. coli cells. However, VexEF did not confer increased MIC of any drug tested in tolC-deficient E. coli KAM43 cells. On the other hand, when E. coli KAM43 was transformed with vexAB, vexCD or vexEF together with tolC(Vc) of V. cholerae NCTC4716, we observed elevated MICs of various antimicrobial agents. Among them, E. coli KAM43 expressing both VexEF and TolC(Vc) showed much higher MICs and much broader substrate specificity than the other two. We also observed ethidium efflux activity via VexEF-TolC(Vc), and the activity required Na(+). Thus, VexEF-TolC (Vc) is either a Na(+)-activated or a Na(+)-coupled transporter. To our knowledge, this is the first report on the requirement of Na(+) for an RND-type efflux transporter.  相似文献   

17.
A multidrug efflux pump gene (cmeB) was identified from the published Campylobacter jejuni genome sequence. Secondary structural analysis showed that the gene encoded a protein belonging to the resistance nodulation cell division (RND) family of efflux transporters. The gene was inactivated by insertional mutagenesis. Compared with the wild-type strain (NCTC 11168), the resultant knockout strain (NCTC 11168-cmeB::kan(r)) displayed increased susceptibility to a range of antibiotics including beta-lactams, fluoroquinolones, macrolides, chloramphenicol, tetracycline, ethidium bromide, the dye acridine orange and the detergent sodium dodecyl sulfate. Accumulation of ciprofloxacin was increased in the knockout mutant, but carbonyl cyanide m-chlorophenyl hydrazone, a proton motive force inhibitor, had less effect upon ciprofloxacin accumulation in the knockout mutant compared with NCTC 11168. These data show that the identified gene encodes an RND-type multi-substrate efflux transporter, which contributes to intrinsic resistance to a range of structurally unrelated compounds in C. jejuni. This efflux pump has been named CmeB (for Campylobacter multidrug efflux).  相似文献   

18.
Regulation of bacterial drug export systems.   总被引:5,自引:0,他引:5  
  相似文献   

19.
The involvement of transporters in multidrug resistance of bacteria is an increasingly challenging problem, and most of the pumps identified so far use the protonmotive gradient as the energy source. A new member of the ATP-binding cassette (ABC) family, known in Bacillus subtilis as YvcC and homologous to each half of mammalian P-glycoprotein and to LmrA of Lactococcus lactis, has been studied here. The yvcC gene was constitutively expressed in B. subtilis throughout its growth, and a knockout mutant showed a lower rate of ethidium efflux than the wild-type strain. Overexpression of yvcC in Escherichia coli allowed the preparation of highly enriched inverted-membrane vesicles that exhibited high transport activities of three fluorescent drugs, namely, Hoechst 33342, doxorubicin, and 7-aminoactinomycin D. After solubilization with n-dodecyl beta-D-maltoside, the hexahistidine-tagged YvcC was purified by a one-step affinity chromatography, and its ability to bind many P-glycoprotein effectors was evidenced by fluorescence spectroscopy experiments. Collectively, these results showed that YvcC is a multidrug ABC transporter functionally active in wild-type B. subtilis, and YvcC was therefore renamed BmrA for Bacillus multidrug resistance ATP. Besides, reconstitution of YvcC into liposomes led to the highest, vanadate-sensitive, ATPase activity reported so far for an ABC transporter. Interestingly, such a high ATP hydrolysis proceeds with a positive cooperativity mechanism, a property only found so far with ABC importers.  相似文献   

20.
Multidrug efflux systems not only cause resistance against antibiotics and toxic compounds but also mediate successful host colonization by certain plant-associated bacteria. The genome of the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum encodes 24 members of the family of resistance/nodulation/cell division (RND) multidrug efflux systems, of which BdeAB is genetically controlled by the RegSR two-component regulatory system. Phylogenetic analysis of the membrane components of these 24 RND-type transporters revealed that BdeB is more closely related to functionally characterized orthologs in other bacteria, including those associated with plants, than to any of the other 23 paralogs in B. japonicum. A mutant with a deletion of the bdeAB genes was more susceptible to inhibition by the aminoglycosides kanamycin and gentamicin than the wild type, and had a strongly decreased symbiotic nitrogen-fixation activity on soybean, but not on the alternative host plants mungbean and cowpea, and only very marginally on siratro. The host-specific role of a multidrug efflux pump is a novel feature in the rhizobia-legume symbioses. Consistent with the RegSR dependency of bdeAB, a B. japonicum regR mutant was found to have a greater sensitivity against the two tested antibiotics and a symbiotic defect that is most pronounced for soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号