首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite recent findings that mutualistic interactions between two species may be greatly affected by species external to the mutualism, the implications of such multi-species interactions for the population dynamics of the mutualists are virtually unexplored. In this paper, we ask how the mutualism between the shoot-base boring weevil Apion onopordi and the rust fungus Puccinia punctiformis is influenced by the dynamics of their shared host plant Cirsium arvense, and vice versa. In particular, we hypothesized that the distribution of the weevil's egg load between healthy and rust-infected thistles may regulate the abundance of the mutualists and their host plant. In contrast to our expectations we found that the dynamics of the mutualists are largely determined by the dynamics of their host. This is, to our knowledge, the first demonstration that the dynamics of a mutualism are driven by a third, non-mutualistic species.  相似文献   

2.
This study was carried out to determine the fungal pathogens on Chenopodium album L., Cirsium arvense (L.) Scop., Convolvulus arvensis L., Cynodon dactylon (L.) Pers., Delphinium consolida L., Portulaca oleracea L., Rumex crispus L., Solanum nigrum L., Sorghum halepense (L.) Pers. and Xanthium strumarium L. which were common weed species of agricultural areas. Surveys were conducted in May-June and August-September in 2004-2005 growing seasons. During the surveys density and frequency of the above mentioned weed species were also determined and number of infected plants was counted in each sampling area. Infected weed samples were collected from each sampling point and brought to the laboratory in polyethylene bags and the pathogens were identified at genus or species level. As a result of two year surveys, ten fungal pathogens were determined on eight weed species. The most important fungal pathogens determined on common weed species were as follow; Peronospora farinosa (Fr.) Fr. on C. album, and Septoria convolvuli DC., Erysiphe convolvuli DC., and Puccinia punctiformis (Strauss) Roehrl. on C. arvensis. These fungal diseases were observed mainly on the weeds located at the borders of fields. Infection rates of these pathogens reached up to 21.2% in some of the survey areas. Further studies should be conducted to evaluate the efficacy of these pathogen under in vitro and in vivo conditions.  相似文献   

3.
Lasat MM  Baker A  Kochian LV 《Plant physiology》1996,112(4):1715-1722
Radiotracer techniques were employed to characterize 65Zn2+ influx into the root symplasm and translocation to the shoot in Thlaspi caerulescens, a Zn hyperaccumulator, and Thlaspi arvense, a nonaccumulator. A protocol was developed that allowed us to quantify unidirectional 65Zn2+ influx across the root-cell plasma membrane (20 min of radioactive uptake followed by 15 min of desorption in a 100 [mu]M ZnCl2 + 5 mM CaCl2 solution). Concentration-dependent Zn2+ influx in both Thlaspi species yielded nonsaturating kinetic curves that could be resolved into linear and saturable components. The linear kinetic component was shown to be cell-wall-bound Zn2+ remaining in the root after desorption, and the saturable component was due to Zn2+ influx across the root-cell plasma membrane. This saturable component followed Michaelis-Menten kinetics, with similar apparent Michaelis constant values for T. caerulescens and T. arvense (8 and 6 [mu]M, respectively). However, the maximum initial velocity for Zn2+ influx in T. caerulescens root cells was 4.5-fold higher than for T. arvense, indicating that enhanced absorption into the root is one of the mechanisms involved in Zn hyperaccumulation. After 96 h 10-fold more 65Zn was translocated to the shoot of T. caerulescens compared with T. arvense. This indicates that transport sites other than entry into the root symplasm are also stimulated in T. caerulescens. We suggest that although increased root Zn2+ influx is a significant component, transport across the plasma membrane and tonoplast of leaf cells must also be critical sites for Zn hyperaccumulation in T. caerulescens.  相似文献   

4.
The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and above ground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by above- and below ground herbivores in concert, and relate the abundance of the plant enemies to the species diversity of the local plant communities. The study was carried out in a 7-year-old biodiversity field experiment. We used creeping thistle (Cirsium arvense) as a model, and quantified sap-sucking herbivores: above ground aphids, their antagonists, and root-feeding nematodes. As plant diversity treatments, we used field plots sown with high (15 plant species, HSD) or low (4 plant species, LSD) diverse seed mixtures in 1996 and that were not weeded. Creeping thistle became established spontaneously at the start of the experiment. In 2002, in HSD plots, 90 % of the plant community was made up by 11 species, compared to seven species in LSD plots. No differences were found for C. arvense abundance or biomass. Above ground, three aphid species were found on C. arvense-Uroleucon cirsii, Aphis fabae, and Macrosiphum euphorbiae, but the latter was found only in low densities. Significantly more aphid species were found on individual plants in HSD plots. Moreover, in HSD plots, on average 10 % of aphids were parasitized, while no parasitism was observed in LSD plots. In the root zone of C. arvense, significantly more nematodes were found in HSD than in LSD plots, and a significantly higher proportion of those nematodes were plant parasites. The dominant plant parasitic nematode in both treatments was Paratylenchus. We conclude that biotic resistance by natural enemies may be enhanced by plant species diversity, but that above- and below ground sap-sucking herbivores do not necessarily have to respond similarly to the diversity of the surrounding plant community.  相似文献   

5.
Phenolic compounds are potential antimicrobial agents in willows ( Salix spp.). However, little is known about their role in willow‐pathogen interactions. Earlier studies have shown that phenolic levels may vary depending on genotype and environmental factors (such as nutrient availability). In the present study, the combined effects of nitrogen fertilization and infection by pathogenic rust ( Melampsora sp.) on phenolics and growth in willow ( salix myrsinifolia ) clones were investigated. Cutting-propagated plants of eight willow clones were subjected to low and optimum levels of nitrogen fertilization and inoculated with rust urediniospores or mock-inoculated with water. The plants were harvested 20 days after the inoculations and the dry weight of the leaves, stems and roots determined. Phenolics were analysed from leaf material using HPLC. The willow clones differed significantly in their phenolic content, rust frequency and phytomass production. Plants under optimum nitrogen availability showed increased shoot phytomass production and reduced root production. Rust infection increased the root phytomass of willow under both fertilization treatments, but had no consistent effect on the shoot growth of the clones. Low nitrogen availability increased the phenolic levels in willow leaves, but the rust frequency did not differ significantly between plants grown at low and optimum levels of nitrogen fertilization. In several clones, rust infection increased the concentrations of individual phenolic compounds, but there were no significant correlations between phenolic concentrations and the level of rust infection. The results indicate that resistance in compatible willow‐rust interactions may not be directly governed by phenolic compounds.  相似文献   

6.
A plant gene up-regulated at rust infection sites   总被引:8,自引:0,他引:8       下载免费PDF全文
Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%-82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a delta1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection.  相似文献   

7.
The inheritance of resistance in red raspberry (Rubus idaeus) to yellow rust (Phragmidium rubi-idaei) was studied in a diallel cross among the cultivars Boyne, Meeker, Mailing Jewel, Glen Prosen and Glen Clova. The progenies and clonally propagated parents were exposed initially in a rust-infected plantation where the incidence and severity of infection was assessed at the telial stage. The following spring leaves on new canes of the same plants were inoculated with urediniospores in a glasshouse at 18 ± 2 °C. The latent period and number of uredinia per cm2 of abaxial leaf surface were determined 13 and 18 days after inoculation. Cv. Boyne developed only chlorotic flecking on inoculated leaves in the glasshouse and no sporulation was observed. It is postulated that this reaction was determined by a major gene which is designated Yr. Some of the other parents showed incomplete resistance of the slow rusting type, and segregants of Boyne selfed that were susceptible also showed low levels of rust, which suggests that Boyne carries both major- and minor-gene resistance. Diallel analyses of both the field and glasshouse data from the susceptible segregates indicated that the degree of incomplete resistance present was determined predominantly by additive gene action, though small but significant non-additive effects also occurred: cv. Meeker was the most resistant parent and contributed the most resistance to the progenies. The Meeker progenies also segregated for gene H, which determines cane hairiness and is known to be associated with resistance to other diseases. Segregants without hairs (genotypes hh) were found to be the more resistant to rust.  相似文献   

8.
PAUL  N. D.; AYRES  P. G. 《Annals of botany》1986,57(3):353-360
Groundsel (Senecio vulgaris L.) was grown in sand culture ata range of nutrient concentrations. Except when nutrient deficiencywas severe, infection by the rust fungus Puccinia lagenophoraeCooke substantially reduced root dry weight but had little effecton root length. Thus, specific root length (SRL, cm root mg–1d. wt) was significantly increased in rust-infected plants.The inhibition of root dry weight caused by rust infection wasmost pronounced late in development, especially after floweringwhen, in control plants, root elongation but not dry weightaccumulation ceased. In rusted plants, and in all plants subjectedto severe nutrient deficiency, dry weight accumulation in theroots ceased concurrently with root elongation. Late in developmentat high nutrient concentration adventitious roots with low SRLswere produced. However, infection did not modify the productionof such roots and increases in SRL could not be attributed tochanges in any single type of root. There was an inverse relationship between SRL and root diameter.This relationship was unaffected by rust infection whilst nutrientdeficiency changed only its intercept: at a given SRL rootsof nutrient stressed plants were thinner than those of plantswith adequate nutrient supply. Thus, the smaller diameter ofroots of nutrient-stressed plants occurred independently ofmeasured changes in SRL but, in the absence of nutrient stress,the decrease in root diameter caused by rust was closely relatedto increases in SRL. Changes in the root: length relationships in rusted plants mayhave important implications for root activity in the field.In view of the reported changes in SRL, inhibition of root growthin terms of dry weight may be a poor indicator of potentialchanges in activity. Senecio vulgaris, rust infection, nutrient deficiency, root weight: length ratio, root diameter  相似文献   

9.
中国野生鸭茅种质资源锈病抗性研究   总被引:1,自引:1,他引:0  
鸭茅是一种著名的温带牧草,容易感染锈病。本研究从植株感病率、感病严重度、病情指数和反应指数4方面对国内37份鸭茅种质资源(野生资源35份)进行锈病的病情调查及抗病性研究。研究初步揭示了鸭茅锈病的发病规律,研究结果显示02-106、02-107、90-130、02-115等4份材料对鸭茅锈病具有较好抗性,可作为育种材料进一步深入研究。  相似文献   

10.
D Bai  G J Scoles  D R Knott 《Génome》1995,38(1):8-16
In order to counteract the effects of the mutant genes in races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) in wheat, exploration of new resistance genes in wheat relatives is necessary. Three accessions of Triticum cylindricum Ces. (4x, CCDD), Acy1, Acy9, and Acy11, were tested with 10 races each of leaf rust and stem rust. They were resistant to all races tested. Viable F1 plants were produced from the crosses of the T. cylindricum accessions as males with susceptible MP and Chinese Spring ph1b hexaploid wheats (T. aestivum, 6x, AABBDD), but not with susceptible Kubanka durum wheat (T. turgidum var. durum, 4x, AABB), even with embryo rescue. In these crosses the D genome of hexaploid wheat may play a critical role in eliminating the barriers for species isolation during hybrid seed development. The T. cylindricum rust resistance was expressed in the F1 hybrids with hexaploid wheat. However, only the cross MP/Acy1 was successfully backcrossed to another susceptible hexaploid wheat, LMPG-6. In the BC2F2 of the cross MP/Acy1//LMPG-6/3/MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 (infection types (IT) 1=, 1, or 1+; addition line 1) or stem rust race 15B-1 (IT 1 or 1+; addition line 2) were selected. Rust tests and examination of chromosome pairing of the F1 hybrids and the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. cylindricum C-genome chromosomes rather than on the D-genome chromosomes. The T. cylindricum chromosome in addition line 2 was determined to be chromosome 4C through the detection of RFLPs among the genomes using a set of homoeologous group-specific wheat cDNA probes. Addition line 1 was resistant to the 10 races of leaf rust and addition line 2 was resistant to the 10 races of stem rust, as was the T. cylindricum parent. The added C-genome chromosomes occasionally paired with hexaploid wheat chromosomes. Translocation lines with rust resistance (2n = 21 II) may be obtained in the self-pollinated progeny of the addition lines through spontaneous recombination of the C-genome chromosomes and wheat chromosomes. Such translocation lines with resistance against a wide spectrum of rust races should be potentially valuable in breeding wheat for rust resistance.  相似文献   

11.
Pea breeding for rust resistance is hampered by the little resistance available in pea. In an attempt to validate alternative control methods, we evaluated the potential of systemic acquired resistance for rust control in pea by biotic and abiotic inducers. Challenge with a virulent or with an avirulent rust isolate prior to pea rust inoculation did not induce resistance either locally or systemically. Exogenous application of salicylic acid in the range 5–10 m m prior to rust inoculation did not protect against rust locally, but reduced rust infection systemically in first upper leaf node although not in the upper ones. Some phytotoxicity was observed at 10 m m . Exogenous application of benzothiadiazole in the range 1–10 m m provided locally a 30–40% reduction in infection frequency. At least 5 m m was needed to reduce rust infection systemically in first upper leaf, and 10 m m in upper ones. Exogenous application of dl -3-amino- n -butyric acid (BABA) provided locally a 45–58% reduction in infection frequency, while systemically a 33–58 and 49–58% reduction of rust symptoms was achieved on leaves at second and third nodes respectively. BABA application was not associated with symptoms of phytotoxicity.  相似文献   

12.
Nonhost resistance of rice to rust pathogens   总被引:1,自引:0,他引:1  
Rice is atypical in that it is an agricultural cereal that is immune to fungal rust diseases. This report demonstrates that several cereal rust species (Puccinia graminis f. sp tritici, P. triticina, P. striiformis, and P. hordei) can infect rice and produce all the infection structures necessary for plant colonization, including specialized feeding cells (haustoria). Some rust infection sites are remarkably large and many plant cells are colonized, suggesting that nutrient uptake occurs to support this growth. Rice responds with an active, nonhost resistance (NHR) response that prevents fungal sporulation and that involves callose deposition, production of reactive oxygen species, and, occasionally, cell death. Genetic variation for the efficacy of NHR to wheat stem rust and wheat leaf rust was observed. Unlike cereal rusts, the rust pathogen (Melampsora lini) of the dicotyledenous plant flax (Linum usitatissimum) rarely successfully infects rice due to an apparent inability to recognize host-derived signals. Morphologically abnormal infection structures are produced and appressorial-like structures often don't coincide with stomata. These data suggest that basic compatibility is an important determinate of nonhost infection outcomes of rust diseases on cereals, with cereal rusts being more capable of infecting a cereal nonhost species compared with rust species that are adapted for dicot hosts.  相似文献   

13.
1. The relative importance of host-plant resources and natural enemies in influencing the abundance of insect herbivores was investigated in potted plant and natural population experiments, using tephritid (Diptera: Tephritidae) flies, their host plant, creeping thistle Cirsium arvense, and their Hymenoptera parasitoids. 2. Experimental manipulation of host-plant quality (i.e. levels of host-plant nutrients) and resource availability (i.e. the number of buds) increased tephritid abundance. There was no evidence that the seed-feeding tephritid fly Xyphosia miliaria preferentially oviposited on fertilized C. arvense. 3. At low thistle densities, X. miliaria showed a constant rate of resource exploitation. At higher thistle densities, a threshold was detected, above which additional buds were not attacked. 4. Parasitism attack was variable across host (tephritid) densities but levels of parasitism were consistently higher on the fertilized thistles. 5. Experimental manipulation of host-plant quality and resource availability (quantity) not only directly affects the tephritid population but also, indirectly, leads to high rates of parasitism. Both chemical and physical characteristics of host plants affect the performance of natural enemies. 6. Both top-down and bottom-up forces act to influence tephritid abundance, with bottom-up influences appearing to be the most important.  相似文献   

14.
L A Boyd  P H Smith  A H Wilson  P N Minchin 《Génome》2002,45(6):1035-1040
Intensive screening of a small population of mutagenised wheat lines revealed a large number of lines with altered resistance to both yellow and brown rust. The parental cultivar Guardian has an intermediate level of adult plant resistance to this disease; mutants were therefore isolated that showed either enhanced resistance or enhanced susceptibility to yellow rust. Seven lines were identified that gave an altered yellow rust disease phenotype as adult plants under both field and greenhouse conditions. Simultaneous field testing for brown rust infection identified two of these lines as having increased resistance to brown rust.  相似文献   

15.
R L Innes  E R Kerber 《Génome》1994,37(5):813-822
Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.  相似文献   

16.
Canada thistle (Cirsium arvense) is one of the worst weeds in temperate areas of the world. A rust fungus, Puccinia punctiformis, was first proposed as a biological control agent for C. arvense in 1893. The rust causes systemic disease which ultimately kills C. arvense plants. In 2013 it was demonstrated in four countries, that inoculation of C. arvense rosettes in the fall with ground telia-bearing leaves can initiate epidemics of systemic rust disease with an average of 28% of inoculated rosettes producing a systemically diseased shoot the following spring. Other rosettes that emerged near inoculation points in spring were stunted and appeared diseased. To determine whether other rosettes were diseased, a chemiluminescence western slot blot test, applying polyclonal antibodies raised against P. punctiformis antigens, was developed to detect the fungus in roots. Rosettes were inoculated with telia-bearing leaves in the fall in Maryland, USA and Veroia, Greece. Roots of asymptomatic rosettes that emerged adjacent to inoculation points the following spring were tested for the presence of the fungus with the slot blot test. Rosettes that had diseased shoots were recorded. Based on the slot blot tests, 50–60% of the asymptomatic rosettes adjacent to inoculation points were positive for presence of the rust and likely to be systemically diseased. To demonstrate that systemic disease leads to C. arvense decline, C. arvense shoot densities were measured annually at 10 sites, in three countries, that had been inoculated with telia-bearing leaves in the fall between 2008 and 2012. Changes in C. arvense shoot densities over time were calculated. Average reductions in C. arvense density across the 10 sites were 43.1 ± 10.0% at 18 months after inoculation, 63.8 ± 8.0% at 30 months after inoculation, and 80.9 ± 16.5% at 42 months after inoculation, and 72.9 ± 27.2% at 54 months after inoculation; the 54 month reduction was, however, based on only two sites.  相似文献   

17.
Stem rust (Puccinia graminis f. sp. tritici) is responsible for major production losses in hexaploid wheat (Triticum aestivum L.) around the world. The spread of stem rust race Ug99 and variants is a threat to worldwide wheat production and efforts are ongoing to identify and incorporate resistance. The objectives of this research were to identify quantitative trait loci (QTL) and to study their epistatic interactions for stem rust resistance in a population derived from the Canadian wheat cultivars AC Cadillac and Carberry. A doubled haploid (DH) population was developed and genotyped with DArT® and SSR markers. The parents and DH lines were phenotyped for stem rust severity and infection response to Ug99 and variant races in 2009, 2010 and 2011 in field rust nurseries near Njoro, Kenya, and to North American races in 2011 and 2012 near Swift Current, SK, Canada. Seedling infection type to race TTKSK was assessed in a bio-containment facility in 2009 and 2012 near Morden, MB. Eight QTL for stem rust resistance and three QTL for pseudo-black chaff on nine wheat chromosomes were identified. The phenotypic variance (PV) explained by the stem rust resistance QTL ranged from 2.4 to 48.8 %. AC Cadillac contributed stem rust resistance QTL on chromosomes 2B, 3B, 5B, 6D, 7B and 7D. Carberry contributed resistance QTL on 4B and 5A. Epistatic interactions were observed between loci on 4B and 5B, 4B and 7B, 6D and 3B, 6D and 5B, and 6D and 7B. The stem rust resistance locus on 6D interacted synergistically with 5B to improve the disease resistance through both crossover and non-crossover interactions depending on the environment. Results from this study will assist in planning breeding for stem rust resistance by maximizing QTL main effects and epistatic interactions.  相似文献   

18.

Key message

In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies.

Abstract

Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT® and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.  相似文献   

19.
PAUL  N. D.; AYRES  P. G. 《Annals of botany》1988,61(4):499-506
Groundsel (Senecio vulgaris), healthy or infected with rust,Puccinia lagenophorae, was grown at a range of nutrient concentrationsin sand culture. Specific absorption rates calculated on thebasis of root dry weight (SARW) were greater in rusted thancontrol groundsel for nitrogen, potassium and phosphorus. Whilethe magnitudes of these stimulations varied, they occurred acrossthe whole range of nutrient concentrations. By contrast, specificabsorption rate on the basis of root length (SARL) were littlechanged by rust at any external nutrient concentration; SARLfor phosphate and potassium were slightly reduced when nutrientswere freely available. Water flux per unit dry root weight and length was stimulatedby rust because transpiration per unit leaf area was more rapidin infected plants after fungal sporulation. However, water-fluxand the rate of uptake of nutrients were correlated only whenexpressed on the basis of root weight and increased transpirationdid not appear to be the mechanism underlying increased rootactivity. Rather, increased SARW for N, P and K could very largelybe attributed to increased shoot demand per unit root, whichresulted from the higher shoot: root (S: R) ratios of infectedindividuals. Changes in S: R accounted for 92, 81 and 57% oftotal variation in SARW for K, P and N respectively. Greatervalues for SARW were possible because specific root length (SRL)increased, producing more functional root per unit root weight.The lack of stimulation in SARL in response to rust could beexplained since the higher SRL of infected plants resulted instable values of shoot weight per unit root length, i.e. shootdemand was not increased by infection on this basis. Senecio vulgaris, Puccinia lagenophorae, rust infection, nutrient uptake, water uptake, shoot: root interactions  相似文献   

20.
Crown rust (Puccinia coronata) is the most important leaf disease in forage ryegrasses (Lolium spp.). In order to evaluate the stability in space and time of crown rust resistance a multisite rust evaluation trial was established by the European breeders association Eucarpia ( Fodder Crops Section). The same seed lots of 33 perennial ryegrass (Lolium perenne) and 18 Italian ryegrass (Lolium multiflorum) varieties were sown in April 2001, 2004 and 2007 at 27 European sites. This paper reports the temporal ranking of the ryegrass varieties for their crown rust susceptibility at the Belgian site and compares this ranking with the mean ranking over the European sites. The crown rust susceptibility was scored in September of each sowing year and of the year after. The rankings of both the perennial and the Italian ryegrass varieties were well correlated between the successive yearly observations at each sowing period. Also the rankings of the varieties of both species were similar over the 3 sowing periods. The rankings at the Belgian site corresponded very well with the mean ranking over the European sites. The crown rust resistance in ryegrass seems to be durable and consistent over a great part of Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号