首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria do not only produce less ATP, but they also increase the production of reactive oxygen species (ROS) as by-products of aerobic metabolism in the aging tissues of the human and animals. It is now generally accepted that aging-associated respiratory function decline can result in enhanced production of ROS in mitochondria. Moreover, the activities of free radical-scavenging enzymes are altered in the aging process. The concurrent age-related changes of these two systems result in the elevation of oxidative stress in aging tissues. Within a certain concentration range, ROS may induce stress response of the cells by altering expression of respiratory genes to uphold the energy metabolism to rescue the cell. However, beyond the threshold, ROS may cause a wide spectrum of oxidative damage to various cellular components to result in cell death or elicit apoptosis by induction of mitochondrial membrane permeability transition and release of apoptogenic factors such as cytochrome c. Moreover, oxidative damage and large-scale deletion and duplication of mitochondrial DNA (mtDNA) have been found to increase with age in various tissues of the human. Mitochondria act like a biosensor of oxidative stress and they enable cell to undergo changes in aging and age-related diseases. On the other hand, it has recently been demonstrated that impairment in mitochondrial respiration and oxidative phosphorylation elicits an increase in oxidative stress and causes a host of mtDNA rearrangements and deletions. Here, we review work done in the past few years to support our view that oxidative stress and oxidative damage are a result of concurrent accumulation of mtDNA mutations and defective antioxidant enzymes in human aging.  相似文献   

2.
活性氧、线粒体通透性转换与细胞凋亡   总被引:2,自引:0,他引:2  
线粒体是真核细胞中非常重要的细胞器,细胞中的活性氧等自由基主要来源于此,线粒体膜的通透性转换(mitochondrial permeability transition,MPT)及其孔道(mitochondrialpermeability transition pore,MPTP)更是在内源性细胞凋亡中发挥了关键作用。持续性的线粒体膜通透性转换在凋亡的效应阶段起决定性作用,可介导细胞色素c等促凋亡因子从线粒体释放到胞浆中,进一步激活下游的信号通路,导致细胞不可逆地走向凋亡。瞬时性的线粒体膜通透性转换及其偶联的线粒体局部的活性氧爆发同样具有促凋亡的作用。线粒体通透性孔道的开放释放出大量活性氧,这些活性氧又能够进一步激活该孔道,以正反馈的形式进一步加剧孔道的打开,放大凋亡信号。活性氧、线粒体通透性转换与细胞凋亡之间具有密不可分的联系,本文根据已知的研究结果集中讨论了这三者的关系,并着重论述了该领域中的最新发现和成果。  相似文献   

3.
Mitochondria play an important role in apoptosis by generating reactive oxygen species (ROS) and inducing membrane permeability transition (MPT). Recent studies on alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid, suggest that these agents (LAs) inhibit apoptosis of cells by means of their antioxidant activity. On the other hand, LAs also stimulate Ca2+-dependent mitochondrial MPT and induce apoptosis of certain cells. Thus, the role of LAs in apoptotic cell death remains obscure. We investigated the mechanism of LA-induced MPT of mitochondria. Biochemical analysis revealed, in the presence of Ca2+, inorganic phosphate and succinate, LA induced uncoupling of oxidative phosphorylation, stimulated oxidation of pyridine nucleotides and enhanced Ca2+-induced MPT, as characterized by decrease in Ca2+ loading, ROS generation, oxidation of thiol groups of adenine nucleotide translocator, membrane depolarization, swelling, and cytochrome c release in an incubation time and concentration dependent manner. LA also stimulated hydroxyl radical-induced MPT in a alpha-tocopherol-inhibitable manner. Cyclosporine A, a potent inhibitor of mitochondrial MPT, inhibited all these events induced by LA. These results indicate that, under certain conditions, LA stimulates Ca2+-induced MPT through the decrease in loading capacity of Ca2+ and that MPT is involved in LA-induced apoptotic cell death. Since fairly high doses of LA have been used as a dietary supplement, the possible occurrence of such side effects, including mitochondrial dysfunction and induction of apoptosis in normal tissues, should be studied.  相似文献   

4.
5.
Mitochondria are the major ATP producer of the mammalian cell. Moreover, mitochondria are also the main intracellular source and target of reactive oxygen species (ROS) that are continually generated as by-products of aerobic metabolism in human cells. A low level of ROS generated from the respiratory chain was recently proposed to take part in the signaling from mitochondria to the nucleus. Several structural characteristics of mitochondria and the mitochondrial genome enable them to sense and respond to extracellular and intracellular signals or stresses in order to sustain the life of the cell. It has been established that mitochondrial respiratory function declines with age, and that defects in the respiratory chain increase the production of ROS and free radicals in mitochondria. Within a certain concentration range, ROS may induce stress responses of the cell by altering the expression of a number of genes in order to uphold energy metabolism to rescue the cell. However, beyond this threshold, ROS may elicit apoptosis by induction of mitochondrial membrane permeability transition and release of cytochrome c. Intensive research in the past few years has established that mitochondria play a pivotal role in the early phase of apoptosis in mammalian cells. In this article, the role of mitochondria in the determination of life and death of the cell is reviewed on the basis of recent findings gathered from this and other laboratories.  相似文献   

6.
7.
Mitochondria can initiate apoptosis by releasing cytochrome c after undergoing a calcium-dependent permeability transition (MPT). Although the MPT is enhanced by oxidative stress and prevented by adenine nucleotides such as adenosine 5'-diphosphate (ADP), the hypothesis has not been tested that oxidants regulate the effects of exogenous adenine nucleotides on the MPT and cytochrome c release. We found that cytochrome c release from intact rat liver mitochondria depended strictly on pore opening and not on membrane potential, and that MPT-enhancing oxidative stress also augmented cytochrome c release. At low oxidative stress, micromolar (ADP) and low adenosine 5'-triphosphate (ATP)/ADP ratio inhibited the MPT and cytochrome c release, whereas ATP or high ATP/ADP had only a slight effect. In freshly isolated mitochondria, the time to half-maximal MPT was related to the log of the ATP/ADP ratio. This function was shifted to shorter times by oxidative stress which decreased ADP protection and caused ATP to accelerate the calcium-dependent MPT. By comparison, mitochondria treated with reducing agents and those isolated from septic rats were protected from the MPT by both nucleotides. These results indicate that oxidation-sensitive site(s) in the membrane regulate the effects of adenine nucleotides on the MPT. The oxidant-based differences in the effects of ADP and ATP on the pore support the novel hypothesis that failure of the cell to consume ATP and provide adequate ADP at the adenine nucleotide transporter during oxidative stress predisposes to cytochrome c release and initiation of apoptosis.  相似文献   

8.
Mitochondria are frequently the target of injury after stresses leading to necrotic and apoptoticcell death. Inhibition of oxidative phosphorylation progresses to uncoupling when opening ofa high conductance permeability transition (PT) pore in the mitochondrial inner membraneabruptly increases the permeability of the mitochondrial inner membrane to solutes of molecularmass up to 1500 Da. Cyclosporin A (CsA) blocks this mitochondrial permeability transition(MPT) and prevents necrotic cell death from oxidative stress, Ca2+ ionophore toxicity,Reye-related drug toxicity, pH-dependent ischemia/reperfusion injury, and other models of cell injury.Confocal fluorescence microscopy directly visualizes onset of the MPT from the movementof green-fluorescing calcein into mitochondria and the simultaneous release from mitochondriaof red-fluorescing tetramethylrhodamine methylester, a membrane potential-indicatingfluorophore. In oxidative stress to hepatocytes induced by tert-butylhydroperoxide, NAD(P)Hoxidation, increased mitochondrial Ca2+, and mitochondrial generation of reactive oxygen speciesprecede and contribute to onset of the MPT. Confocal microscopy also shows directly thatthe MPT is a critical event in apoptosis of hepatocytes induced by tumor necrosis factor-.Progression to necrotic and apoptotic cell killing depends, at least in part, on the effect theMPT has on cellular ATP levels. If ATP levels fall profoundly, necrotic killing ensues. If ATPlevels are at least partially maintained, apoptosis follows the MPT. Cellular features of bothapoptosis and necrosis frequently occur together after death signals and toxic stresses. A newterm, necrapoptosis, describes such death processes that begin with a common stress or deathsignal, progress by shared pathways, but culminate in either cell lysis (necrosis) or programmedcellular resorption (apoptosis) depending on modifying factors such as ATP.  相似文献   

9.
Nucleotide-binding oligomerization domain protein-2 (NOD2) activation in skeletal muscle cells has been associated with insulin resistance, but the underlying mechanisms are not yet clear. Here we demonstrate the implication of oxidative stress in the development of mitochondrial dysfunction and insulin resistance in response to NOD2 activation in skeletal muscle cells. Treatment with the selective NOD2 ligand muramyl dipeptide (MDP) increased mitochondrial reactive oxygen species (ROS) generation in L6 myotubes. MDP-induced ROS production was associated with increased levels of protein carbonyls and reduction in citrate synthase activity, cellular ATP level, and mitochondrial membrane potential, as well as altered expression of genes involved in mitochondrial function and metabolism. Antioxidant treatment attenuated MDP-induced ROS production and restored mitochondrial functions. In addition, the presence of antioxidant prevented NOD2-mediated activation of MAPK kinases and the inflammatory response. This was associated with reduced serine phosphorylation of insulin receptor substrate-1 (IRS-1) and improved insulin-stimulated tyrosine phosphorylation of IRS-1 and downstream activation of Akt phosphorylation. These data indicate that oxidative stress plays a role in NOD2 activation-induced inflammatory response and that MDP-induced oxidative stress correlates with impairment of mitochondrial functions and induction of insulin resistance in skeletal muscle cells.  相似文献   

10.
Throughout spermatogenesis, mitochondria undergo a morphological and functional differentiation. Mitochondria are involved in the production of reactive oxygen species (ROS), considered one of the mediators of ageing. Particularly, lipid peroxidation is regarded as a major phenomenon by which ROS can impair cellular function. In the present study, we examined the production of superoxide anion, superoxide dismutase activity and the effect of Fe2+/ascorbate induced-lipid peroxidation on the respiratory chain activities of testis mitochondria throughout the process of spermatogenesis and ageing. Mitochondria from rat testes generated superoxide anion, mainly using NADH as substrate, which increased according to age. The activity of SOD is age-dependent and greatly stimulated during the first wave of spermatogenesis, but decreases in adulthood and old age. TBARS concentration was also markedly increased by ageing. The activity of mitochondrial respiratory chain complexes is differentially affected by oxidative stress induced by iron/ascorbate, succinate-dehydrogenase activity being less vulnerable than that of NADH-dehydrogenase and cytochrome c oxidase. The data suggest that ageing is accompanied by reduced activity of SOD, leading to excessive oxidative stress and enhanced lipid peroxidation that compromises the functionality of the electron transport chain. The data support the concept that mitochondrial function is an important determinant in ageing.  相似文献   

11.

Background  

The development of chilling and freezing injury symptoms in plants is known to frequently coincide with peroxidation of free fatty acids. Mitochondria are one of the major sources of reactive oxygen species during cold stress. Recently it has been suggested that uncoupling of oxidation and phosphorylation in mitochondria during oxidative stress can decrease ROS formation by mitochondrial respiratory chain generation. At the same time, it is known that plant uncoupling mitochondrial protein (PUMP) and other UCP-like proteins are not the only uncoupling system in plant mitochondria. All plants have cyanide-resistant oxidase (AOX) whose activation causes an uncoupling of respiration and oxidative phosphorylation. Recently it has been found that in cereals, cold stress protein CSP 310 exists, and that this causes uncoupling of oxidation and phosphorylation in mitochondria.  相似文献   

12.
The mitochondrial form of thioredoxin, thioredoxin 2 (Txn2), plays an important role in redox control and protection against ROS-induced mitochondrial damage. To evaluate the effect of reduced levels of Txn2 in vivo, we measured oxidative damage and mitochondrial function using mice heterozygous for the Txn2 gene (Txn2(+/-)). The Txn2(+/-) mice showed approximately 50% decrease in Trx-2 protein expression in all tissues without upregulating the other major components of the antioxidant defense system. Reduced levels of Txn2 resulted in decreased mitochondrial function as shown by reduced ATP production by isolated mitochondria and reduced activity of electron transport chain complexes (ETCs). Mitochondria isolated from Txn2(+/-) mice also showed increased ROS production compared to wild type mice. The Txn2(+/-) mice showed increased oxidative damage to nuclear DNA, lipids, and proteins in liver. In addition, we observed an increase in apoptosis in liver from Txn2(+/-) mice compared with wild type mice after diquat treatment. Our results suggest that Txn2 plays an important role in protecting the mitochondria against oxidative stress and in sensitizing the cells to ROS-induced apoptosis.  相似文献   

13.
Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.  相似文献   

14.
The mitochondrial oxidative phosphorylation (OxPhos) system plays a key role in energy production, the generation of free radicals, and apoptosis. A lack of cellular energy, excessive radical production, and dysregulated apoptosis are found alone or in combination in most human diseases, including neurodegenerative diseases, stroke, cardiovascular disorders, ischemia/reperfusion, and cancer. In the context of its relevance to human disease, this article reviews current knowledge about the regulation of OxPhos with a focus on cell signaling and discusses identified phosphorylation sites with the aid of crystal structures of OxPhos complexes. Several recent studies have shown that all OxPhos components can be phosphorylated; even the small electron carrier cytochrome c is tyrosine phosphorylated in vivo. We propose that in higher organisms, in contrast to bacteria, cell signaling pathways are the main regulator of energy production, triggered for example by hormones. Pathways that have been identified to act on OxPhos include protein kinases A and C and growth factor activated receptor tyrosine kinase signaling. Present knowledge about kinases and phosphatases that execute signals at the level of the mitochondrial OxPhos system, and newly emerging concepts, such as the translocation of kinases to the mitochondria upon stimulation of a signaling pathway, are discussed.  相似文献   

15.
The study addressed aspects of energetics of isolated rat liver mitochondria exposed to the flavonoids quercetin, taxifolin, catechin and galangin, taking into account influences of the 2,3 double bond/3-OH group and 4-oxo function on the C-ring, and o-di-OH on the B-ring of their structures, as well as mitochondrial mechanisms potentially involved in cell necrosis and apoptosis. The major findings/hypothesis, were: The 2,3 double bond/3-OH group in conjugation with the 4-oxo function on the C-ring in the flavonoid structure seems favour the interaction of these compounds with the mitochondrial membrane, decreasing its fluidity either inhibiting the respiratory chain of mitochondria or causing uncoupling; while the o-di-OH on the B-ring seems favour the respiratory chain inhibition, the absence of this structure seems favour the uncoupling activity. The flavonoids not affecting the respiration of mitochondria, induced MPT. The ability of flavonoids to induce the release of mitochondria-accumulated Ca(2+) correlated well with their ability to affect mitochondrial respiration on the one hand, and their inability to induce MPT, on the other. The flavonoids causing substantial respiratory chain inhibition or mitochondrial uncoupling, quercetin and galangin, respectively, also decreased the mitochondrial ATP levels, thus suggesting an apparent higher potential for necrosis induction in relation to the flavonoids inducing MPT, taxifolin and cathechin, which did not decrease significantly the ATP levels, rather suggesting an apparent higher potential for apoptosis induction.  相似文献   

16.
Diapausing embryos of the annual killifish Austrofundulus limnaeus have the highest reported anoxia tolerance of any vertebrate and previous studies indicate modified mitochondrial physiology likely supports anoxic metabolism. Functional mitochondria isolated from diapausing and developing embryos of the annual killifish exhibited VO2, respiratory control ratios (RCR), and P:O ratios consistent with those obtained from other ectothermic vertebrate species. Reduced oxygen consumption associated with dormancy in whole animal respiration rates are correlated with maximal respiration rates of mitochondria isolated from diapausing versus developing embryos. P:O ratios for developing embryos were similar to those obtained from adult liver, but were diminished in mitochondria from diapausing embryos suggesting decreased oxidative efficiency. Proton leak in adult liver corresponded with that of developing embryos but was elevated in mitochondria isolated from diapausing embryos. In metabolically suppressed diapause II embryos, over 95% of the mitochondrial oxygen consumption is accounted for by proton leak across the inner mitochondrial membrane. Decreased activity of mitochondrial respiratory chain complexes correlates with diminished oxidative capacity of isolated mitochondria, especially during diapause. Respiratory complexes exhibited suppressed activity in mitochondria with the ATP synthase exhibiting the greatest inhibition during diapause II. Mitochondria isolated from diapause II embryos are not poised to produce ATP, but rather to shuttle carbon and electrons through the Kreb’s cycle while minimizing the generation of a proton motive force. This particular mitochondrial physiology is likely a mechanism to avoid production of reactive oxygen species during large-scale changes in flux through oxidative phosphorylation pathways associated with metabolic transitions into and out of dormancy and anoxia.  相似文献   

17.
Neuromodulatory delta sleep inducing peptide (DSIP) seems to be implicated in the attenuation of stress-induced pathological metabolic disturbances in various animal species and human beings. Mitochondria, as cell organelles, are considered especially sensitive to stress conditions. In this work, the influence of DSIP and Deltaran((R))-a recently developed product based upon DSIP-on processes of oxidative phosphorylation and ATP production in rat brain mitochondria and rat brain homogenates was studied. A polarographic measurement of oxygen consumption was applied to evaluate the impact of DSIP on maximal rates of mitochondrial respiration and coupling of respiration to ATP production. We provide evidence that DSIP affected the efficiency of oxidative phosphorylation on isolated rat brain mitochondria. This peptide significantly increased the rate of phosphorylated respiration V3, while the rate of uncoupled respiration V(DNP) remaining unchanged. It enhanced the respiratory control ratio RCR and the rate of ADP phosphorylation. DSIP and Deltaran exhibited the same action in rat brain homogenates. We also examined the influence of DSIP under hypoxia when mitochondrial respiratory activity is altered. In rats subjected to hypoxia, we detected a significant stress-mediated reduction of V3 and ADP/t values. Pretreatment of rats with DSIP at the dose of 120 microgram/kg (i.p.) prior to their subjection to hypoxia completely inhibited hypoxia-induced reduction of mitochondrial respiratory activity. The revealed capacity of DSIP to enhance the efficiency of oxidative phosphorylation found in vitro experiments could contribute to understanding pronounced stress protective and antioxidant action of this peptide in vivo.  相似文献   

18.
The arginine metabolite agmatine is able to protect brain mitochondria against the drop in energy capacity by the Ca2+-dependent induction of permeability transition (MPT) in rat brain mitochondria. At normal levels, the amine maintains the respiratory control index and ADP/O ratio and prevents mitochondrial colloid-osmotic swelling and any electrical potential (ΔΨ) drop. MPT is due to oxidative stress induced by the interaction of Ca2+ with the mitochondrial membrane, leading to the production of hydrogen peroxide and, subsequently, other reactive oxygen species (ROS) such as hydroxyl radicals. This production of ROS induces oxidation of sulfhydryl groups, in particular those of two critical cysteines, most probably located on adenine nucleotide translocase, and also oxidation of pyridine nucleotides, resulting in transition pore opening. The protective effect of agmatine is attributable to a scavenging effect on the most toxic ROS, i.e., the hydroxyl radical, thus preventing oxidative stress and consequent bioenergetic collapse.  相似文献   

19.
Mitochondria are the major sites of ATP synthesis through oxidative phosphorylation, a process that is weakened by proton leak. Uncoupling proteins are mitochondrial membrane proteins specialized in inducible proton conductance. They dissipate the proton electrochemical gradient established by the respiratory chain at the expense of reducing substrates. Several physiological roles have been suggested for uncoupling proteins, including roles in the control of the cellular energy balance and in preventive action against oxidative stress. This review focuses on new leads emerging from comparative proteomics about the involvement of uncoupling protein in the mitochondrial physiology. A brief overview on uncoupling proteins and on proteomics applied to mitochondria is also presented herein.  相似文献   

20.
Mitochondria and associated oxidative stress have been shown to play critical roles in apoptotic death induced by various stress agents. Previously, we reported the antitumor property of diospyrin (D1), a plant-derived bisnaphthoquinonoid, and its diethylether derivative (D7), which was found to cause apoptotic death in human cancer cell lines. The present study aims to explore the relevant mechanism of apoptosis involving generation of cellular reactive oxygen species (ROS) by D7 in human breast carcinoma (MCF-7) cells. It was found that while D7 inhibited the proliferation of tumor cells, the associated apoptosis induced by D7 was prevented by treating the cells with N-acetyl-L: -cysteine (NAC), an antioxidant, and cyclosporine A (CsA), an inhibitor of mitochondrial permeability transition (MPT). Experiments using suitable inhibitors also demonstrated that D7 could alter the electron flow in mitochondrial electron transport chain by affecting target(s) between complex I and complex III, and indicated the probable site of D7-induced generation of ROS. These results were further supported by confocal microscopic observation on changes in mitochondrial organization and shape in cells treated with D7. Taken together, the results of our study clearly suggested that the apoptosis induced by D7 would involve alteration of MPT, cardiolipin peroxidation, migration of Bax from cytosol to mitochondria, decreased expression of Bcl-2, and release of cytochrome c, indicating oxidative mechanism at the mitochondrial level in the tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号