首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Compensating changes in the pigment apparatus of photosynthesis that resulted from a complete loss of phycobilisomes (PBS) were investigated in the cells of a PAL mutant of cyanobacterium Synechocystis sp. PCC 6803. The ratio PBS/chlorophyll calculated on the basis of the intensity of bands in the action spectra of photosynthetic activity of two photosystems in the wild strain was 1: 70 for PSII and 1: 300 for PSI. Taking into consideration the number of chlorophyll molecules per reaction center in each photosystem, these ratios could be interpreted as association of PBS with dimers of PSII and trimers of PSI as well as greater dependence of PSII as compared with PSI on light absorption by PBS. The ratio PSI/PSII determined by photochemical cross-section of the reactions of two photosystems was 3.5: 1.0 for wild strain of Synechocystis sp. PCC 6803 and 0.7: 1.0 for the PAL mutant. A fivefold increase in the relative content of PSII in pigment apparatus corresponds to a 5-fold increase in the intensity of bands at 685 and 695 nm as related to the band of PSI at 726 nm recorded in low-temperature fluorescence spectrum of the PAL mutant. Inhibition of PSII with diuron resulted in a pronounced stimulation of chlorophyll fluorescence in the PAL mutant as compared to the wild strain of Synechocystis sp. PCC 6803; these data suggested an activation of electron transfer between PSII and PSI in the mutant cells. Thus, the lack of PBS in the mutant strain of Synechocystis sp. PCC 6803 was compensated for by the higher relative content of PSII in the pigment apparatus of photosynthesis and by a rise in the rate of linear electron transport.  相似文献   

2.
Yang Y  Yin C  Li W  Xu X 《Journal of bacteriology》2008,190(5):1554-1560
Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5°C) in the dark but rapidly losses viability when exposed to chill in the light (100 μmol photons m−2 s−1). Preconditioning at a low temperature (15°C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of α-tocopherol after exposure to chill-light stress. Mutants unable to synthesize α-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from PpetE controlled the level of α-tocopherol and ACLT. We conclude that α-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of α-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates.  相似文献   

3.
4.
The psbX gene (sml0002) coding for a 4.1 kDa protein in Photosystem II of plants and cyanobacteria was deleted in both wild type and in a Photosystem I-less mutant of the cyanobacterium Synechocystis sp. PCC 6803. Polymerase chain reaction and sequencing analysis showed that the mutants had completely segregated. Deletion of the PsbX protein does not seem to influence growth rate, electron transport or water oxidation ability. Whereas a high light induction of the psbX mRNA could be observed in wild type, deletion of the gene did not lead to high light sensibility. Light saturation measurements and 77K fluorescence measurements indicated a minor disconnection of the antenna in the deletion mutant. Furthermore, fluorescence induction measurements as well as immuno-staining of the D1 protein showed that the amount of Photosystem II complexes in the mutants was reduced by 30%. Therefore, PsbX does not seem to be necessary for the Photosystem II electron transport, but directly or indirectly involved in the regulation of the amount of functionally active Photosystem II centres in Synechocystis sp. PCC 6803.  相似文献   

5.
Hebeloma cylindrosporum strain h 17 was grown on media containing either glutamate or ammonium as nitrogen source. Growth tests and in vitro activity measurements revealed that both glutamine synthetase (GS. EC 6.3.1.2) and NADP-specific glutamate dehydrogenase (NADP-GDH, EC 1.4.1.4) are fully functional in wild type mycelia grown on glutamate or ammonium as sole nitrogen source. However, NADP-GDH appeared to be more active than GS in stationary growing mycelia. NADP-GDH is also able to sustain adequate ammonium assimilation in methionine sulfoximine (MSX)-treated mycelia since they grew as well as mycelia fed with ammonium alone. The NADP-GDH also appeared to be L-glutamate inducible whereas GS was repressed by ammonium. The NADP-GDH deficient strain, when transferred from a glutamate containing medium to an ammonium containing medium, exhibited a derepressed GS, although this enzyme did not fully substitute for the deficiency of NADP-GDH in ammonium assimilation. The low NADP-GDH activity of the mutant strain exhibited a reduced mobility on a 6% constant polyacrylamide gel. By contrast, the two enzymes had identical molecular weights, estimated to be ca 295 kDa on gradient polyacrylamide gel. The involvement of NADP-GDH and GS enzymes in nitrogen assimilation is discussed.  相似文献   

6.
Ammonium is one of the major nutrients for plants, and a ubiquitous intermediate in plant metabolism, but it is also known to be toxic to many organisms, in particular to plants and oxygenic photosynthetic microorganisms. Although previous studies revealed a link between ammonium toxicity and photodamage in cyanobacteria under in vivo conditions, ammonium‐induced photodamage of photosystem II (PSII) has not yet been investigated with isolated thylakoid membranes. We show here that ammonium directly accelerated photodamage of PSII in Synechocystis sp. strain PCC6803, rather than affecting the repair of photodamaged PSII. Using isolated thylakoid membranes, it could be demonstrated that ammonium‐induced photodamage of PSII primarily occurred at the oxygen evolution complex, which has a known binding site for ammonium. Wild‐type Synechocystis PCC6803 cells can tolerate relatively high concentrations of ammonium because of efficient PSII repair. Ammonium tolerance requires all three psbA genes since mutants of any of the three single psbA genes are more sensitive to ammonium than wild‐type cells. Even the poorly expressed psbA1 gene, whose expression was studied in some detail, plays a detectable role in ammonium tolerance.  相似文献   

7.
Insertional transposon mutations in the sll0804 and slr1306 genes were found to lead to a loss of optimal photoautotrophy in the cyanobacterium Synechocystis sp. strain PCC 6803 grown under ambient CO2 concentrations (350 ppm). Mutants containing these insertions (4BA2 and 3ZA12, respectively) could grow photoheterotrophically on glucose or photoautotrophically at elevated CO2 concentrations (50,000 ppm). Both of these mutants exhibited an impaired affinity for inorganic carbon. Consequently, the Sll0804 and Slr1306 proteins appear to be putative components of the carbon-concentrating mechanism in Synechocystis sp. strain PCC 6803.  相似文献   

8.
The photosynthetic growth of Synechocystis sp. PCC6803 ceased upon expression of Rhodobacter sphaeroides chlorophyllide a reductase (COR). However, an increase in cytosolic superoxide dismutase level in the recombinant Synechocystis sp. PCC6803 completely reversed the growth cessation. This demonstrates that COR generates superoxide in Synechocystis sp. PCC6803. Considering the dissolved oxygen (DO) level suitable for COR, the intracellular DO of this oxygenic photosynthetic cell appears to be low enough to support COR-mediated superoxide generation. The growth arrest of Synechocystis sp. PCC6803 by COR may give an insight into the evolutionary path from bacteriochlorophyll a biosynthetic pathway to chlorophyll a, which bypasses COR reaction.  相似文献   

9.
10.
Sarah Joshua 《BBA》2005,1709(1):58-68
State transitions in cyanobacteria are a physiological adaptation mechanism that changes the interaction of the phycobilisomes with the Photosystem I and Photosystem II core complexes. A random mutagenesis study in the cyanobacterium Synechocystis sp. PCC6803 identified a gene named rpaC which appeared to be specifically required for state transitions. rpaC is a conserved cyanobacterial gene which was tentatively suggested to code for a novel signal transduction factor. The predicted gene product is a 9-kDa integral membrane protein. We have further examined the role of rpaC by overexpressing the gene in Synechocystis 6803 and by inactivating the ortholog in a second cyanobacterium, Synechococcus sp. PCC7942. Unlike the Synechocystis 6803 null mutant, the Synechococcus 7942 null mutant is unable to segregate, indicating that the gene is essential for cell viability in this cyanobacterium. The Synechocystis 6803 overexpressor is also unable to segregate, indicating that the cells can only tolerate a limited gene copy number. The non-segregated Synechococcus 7942 mutant can perform state transitions but shows a perturbed phycobilisome-Photosystem II interaction. Based on these results, we propose that the rpaC gene product controls the stability of the phycobilisome-Photosystem II supercomplex, and is probably a structural component of the complex.  相似文献   

11.
To elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2'-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and (1)H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2'-rhamnoside and 4-ketomyxol 2'-rhamnoside as polar carotenoids instead of the myxol 2'-fucoside and 4-ketomyxol 2'-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2'-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The beta-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2'-fucoside to myxol and myxol 2'-fucoside, respectively, but not the beta-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed.  相似文献   

12.

Background

Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria.

Results

Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent.

Conclusions

Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.  相似文献   

13.
The PsaE protein is located at the reducing side of photosystem I (PSI) and is involved in docking the soluble electron acceptors, particularly ferredoxin. However, deletion of the psaE gene in the cyanobacterium Synechocystis sp. strain PCC 6803 inhibited neither photoautotrophic growth, nor in vivo linear and cyclic electron flows. Using photoacoustic spectroscopy, we detected an oxygen-dependent, PSI-mediated energy storage activity in the ΔpsaE null mutant, which was not present in the wild type (WT). The expression of the genes encoding catalase (katG) and iron superoxide dismutase (sodB) was upregulated in the ΔpsaE mutant, and the increase in katG expression was correlated with an increase in catalase activity of the cells. When catalases were inhibited by sodium azide, the production of reactive oxygen species was enhanced in ΔpsaE relative to WT. Moreover, sodium azide strongly impaired photoautotrophic growth of the ΔpsaE mutant cells while WT was much less sensitive to this inhibitor. The katG gene was deleted in the ΔpsaE mutant, and the resulting double mutant was more photosensitive than the single mutants, showing cell bleaching and lipid peroxidation in high light. Our results show that the presence of the PsaE polypeptide at the reducing side of PSI has a function in avoidance of electron leakage to oxygen in the light (Mehler reaction) and the resulting formation of toxic oxygen species. PsaE-deficient Synechocystis cells can counteract the chronic photoreduction of oxygen by increasing their capacity to detoxify reactive oxygen species.  相似文献   

14.
The psbZ gene of Synechocystis sp. PCC 6803 encodes the ∼6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700+ is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.  相似文献   

15.
Rates of chlorophyll synthesis and degradation were analyzed in Synechocystis sp. PCC 6803 wild type and mutants lacking one or both photosystems by labeling cells with (15NH4)2SO4 and Na15NO3. Pigments extracted from cells were separated by HPLC and incorporation of the 15N label into porphyrins was subsequently examined by MALDI-TOF mass spectrometry. The life time (τ) of chlorophyll in wild-type Synechocystis grown at a light intensity of 100 μmol photons m−2 s−1 was determined to be about 300 h, much longer than the cell doubling time of about 14 h. Slow chlorophyll degradation (τ ∼200-400 h) was also observed in Photosystem I-less and in Photosystem II-less Synechocystis mutants, whereas in a mutant lacking both Photosystem I and Photosystem II chlorophyll degradation was accelerated 4-5 fold (τ ∼50 h). Chlorophyllide and pheophorbide were identified as intermediates of chlorophyll degradation in the Photosystem I-less/Photosystem II-less mutant. In comparison with the wild type, the chlorophyll synthesis rate was five-fold slower in the Photosystem I-less strain and about eight-fold slower in the strain lacking both photosystems, resulting in different chlorophyll levels in the various mutants. The results presented in this paper demonstrate the presence of a regulation that adjusts the rate of chlorophyll synthesis according to the needs of chlorophyll-binding polypeptides associated with the photosystems.  相似文献   

16.
Cyanobacteria have a tremendous activity to adapt to environmental changes of their growth conditions. In this study, Synechocystis sp. PCC 6803 was used as a model organism to focus on the alternatives of cyanobacterial energy metabolism. Glucose oxidation in Synechocystis sp. PCC6803 was studied by inactivation of slr1843, encoding glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the oxidative pentose phosphate pathway (OPPP). The resulting zwf strain was not capable of glucose supported heterotrophic growth. Growth under autotrophy and under mixotrophy was similar to that of the wild-type strain, even though oxygen evolution and uptake rates of the mutant were decreased in the presence of glucose. The organic acids citrate and succinate supported photoheterotrophic growth of both WT and zwf. Proteome analysis of soluble and membrane fractions allowed identification of four growth condition-dependent proteins, pentose-5-phosphate 3-epimerase (slr1622), inorganic pyrophosphatase (sll0807), hypothetical protein (slr2032) and ammonium/methylammonium permease (sll0108) revealing details of maintenance of the cellular carbon/nitrogen/phosphate balance under different modes of growth.  相似文献   

17.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with - presumably - allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

18.
Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [AsIII] and arsenate [AsV]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.  相似文献   

19.
Ultrastructural and immunocytochemical investigations gave evidence that cyanophycin (multi-L-arginyl-poly-L-aspartate) granules accumulate in the cyanobacterium Synechocystis sp. strain PCC 6803 under nutrient deficient growth conditions, especially under phosphate limitation. Besides nutrient deficiency, growth of Synechocystis PCC 6803 on L-arginine or L-asparagine as sole N-source also led to high increase of cyanophycin synthesis, while growth on the combination of L-arginine or L-asparagine with nitrate only caused minor cyanophycin accumulation. Growth of Synechocystis PCC 6803 on L-arginine as sole N-source caused substantial morphological and physiological changes, such as severe thylakoid membrane degradation with partial loss of pigments and photosynthetic activity leading to a phenotype almost like that seen under nutrient deficiency. In contrast to the wild type, the PsbO-free Synechocystis PCC 6803 mutant could grow on L-arginine as sole N-source with only minor morphological and physiological changes. Due to its fairly balanced growth, the mutant accumulated only few cyanophycin granules. L-arginine degrading activity (measured as ornithine and ammonium formation) was high in the PsbO-free mutant but not in the wild type when cells were grown on L-arginine as sole N-source. In both cells types the L-arginine degrading activity was high (although in the PsbO-free mutant about twice as high as in wild type), when cells were grown on L-arginine in combination with nitrate, and as expected very low when cells were grown on nitrate as sole N-source. Thus, net cyanophycin accumulation in Synechocystis PCC 6803 is regulated by the relative concentration of L-arginine to the total nitrogen pool, and the intracellular L-arginine concentration is greatly influenced by the activity of the L-arginine degrading enzyme system which in part is regulated by the activity status of photosystem II. These results suggest a complex interrelation between cyanophycin synthesis, L-arginine catabolism, and in addition photosynthesis in Synechocystis PCC 6803.  相似文献   

20.
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 105 molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号