首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational analysis of core promoters in the Drosophila genome   总被引:1,自引:0,他引:1       下载免费PDF全文
Ohler U  Liao GC  Niemann H  Rubin GM 《Genome biology》2002,3(12):research0087.1-8712
  相似文献   

2.

Background

Aberrant CpG island promoter DNA hypermethylation is frequently observed in cancer and is believed to contribute to tumor progression by silencing the expression of tumor suppressor genes. Previously, we observed that promoter hypermethylation in breast cancer reflects cell lineage rather than tumor progression and occurs at genes that are already repressed in a lineage-specific manner. To investigate the generality of our observation we analyzed the methylation profiles of 1,154 cancers from 7 different tissue types.

Results

We find that 1,009 genes are prone to hypermethylation in these 7 types of cancer. Nearly half of these genes varied in their susceptibility to hypermethylation between different cancer types. We show that the expression status of hypermethylation prone genes in the originator tissue determines their propensity to become hypermethylated in cancer; specifically, genes that are normally repressed in a tissue are prone to hypermethylation in cancers derived from that tissue. We also show that the promoter regions of hypermethylation-prone genes are depleted of repetitive elements and that DNA sequence around the same promoters is evolutionarily conserved. We propose that these two characteristics reflect tissue-specific gene promoter architecture regulating the expression of these hypermethylation prone genes in normal tissues.

Conclusions

As aberrantly hypermethylated genes are already repressed in pre-cancerous tissue, we suggest that their hypermethylation does not directly contribute to cancer development via silencing. Instead aberrant hypermethylation reflects developmental history and the perturbation of epigenetic mechanisms maintaining these repressed promoters in a hypomethylated state in normal cells.  相似文献   

3.
4.
5.

Background

The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates.

Methodology/Principal Findings

We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates.

Conclusions

The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolution.  相似文献   

6.

Background

Alternative splicing (AS) functions to expand proteomic complexity and plays numerous important roles in gene regulation. However, the extent to which AS coordinates functions in a cell and tissue type specific manner is not known. Moreover, the sequence code that underlies cell and tissue type specific regulation of AS is poorly understood.

Results

Using quantitative AS microarray profiling, we have identified a large number of widely expressed mouse genes that contain single or coordinated pairs of alternative exons that are spliced in a tissue regulated fashion. The majority of these AS events display differential regulation in central nervous system (CNS) tissues. Approximately half of the corresponding genes have neural specific functions and operate in common processes and interconnected pathways. Differential regulation of AS in the CNS tissues correlates strongly with a set of mostly new motifs that are predominantly located in the intron and constitutive exon sequences neighboring CNS-regulated alternative exons. Different subsets of these motifs are correlated with either increased inclusion or increased exclusion of alternative exons in CNS tissues, relative to the other profiled tissues.

Conclusion

Our findings provide new evidence that specific cellular processes in the mammalian CNS are coordinated at the level of AS, and that a complex splicing code underlies CNS specific AS regulation. This code appears to comprise many new motifs, some of which are located in the constitutive exons neighboring regulated alternative exons. These data provide a basis for understanding the molecular mechanisms by which the tissue specific functions of widely expressed genes are coordinated at the level of AS.  相似文献   

7.
8.
9.

Background

The POU family genes containing the POU domain are common in vertebrates and invertebrates and play critical roles in cell-type-specific gene expression and cell fate determination.

Results

Har-POU, a new member of the POU gene family, was cloned from the suboesophageal ganglion of Helicoverpa armigera (Har), and its potential functions in the development of the central nervous system (CNS) were analyzed. Southern blot analysis suggests that a single copy of this gene is present in the H. armigera haploid genome. Har-POU mRNA is distributed widely in various tissues and expressed highly in the CNS, salivary gland, and trachea. In vitro-translated Har-POU specifically bound canonical octamer motifs on the promoter of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) gene in H. armigera. Expression of the Har-POU gene is markedly higher in the CNS of nondiapause-destined pupae than in diapause-destined pupae. Expression of the Har-POU gene in diapausing pupae was upregulated quickly by injection of ecdysone.

Conclusion

Har-POU may respond to ecdysone and bind to the promoter of DH-PBAN gene to regulate pupal development in H. armigera.  相似文献   

10.

Background

The evolutionary rate of a protein is a basic measure of evolution at the molecular level. Previous studies have shown that genes expressed in the brain have significantly lower evolutionary rates than those expressed in somatic tissues.

Results

We study the evolutionary rates of genes expressed in 21 different human brain regions. We find that genes highly expressed in the more recent cortical regions of the brain have lower evolutionary rates than genes highly expressed in subcortical regions. This may partially result from the observation that genes that are highly expressed in cortical regions tend to be highly expressed in subcortical regions, and thus their evolution faces a richer set of functional constraints. The frequency of mammal-specific and primate-specific genes is higher in the highly expressed gene sets of subcortical brain regions than in those of cortical brain regions. The basic inverse correlation between evolutionary rate and gene expression is significantly stronger in brain versus nonbrain tissues, and in cortical versus subcortical regions. Extending upon this cortical/subcortical trend, this inverse correlation is generally more marked for tissues that are located higher along the cranial vertical axis during development, giving rise to the possibility that these tissues are also more evolutionarily recent.

Conclusions

We find that cortically expressed genes are more conserved than subcortical ones, and that gene expression levels exert stronger constraints on sequence evolution in cortical versus subcortical regions. Taken together, these findings suggest that cortically expressed genes are under stronger selective pressure than subcortically expressed genes.  相似文献   

11.

Background

The massive scale of microarray derived gene expression data allows for a global view of cellular function. Thus far, comparative studies of gene expression between species have been based on the level of expression of the gene across corresponding tissues, or on the co-expression of the gene with another gene.

Results

To compare gene expression between distant species on a global scale, we introduce the "expression context". The expression context of a gene is based on the co-expression with all other genes that have unambiguous counterparts in both genomes. Employing this new measure, we show 1) that the expression context is largely conserved between orthologs, and 2) that sequence identity shows little correlation with expression context conservation after gene duplication and speciation.

Conclusion

This means that the degree of sequence identity has a limited predictive quality for differential expression context conservation between orthologs, and thus presumably also for other facets of gene function.  相似文献   

12.
13.
14.
15.

Background

Specific chromatin characteristics, especially the modification status of the core histone proteins, are associated with active and inactive genes. There is growing evidence that genes that respond to environmental or developmental signals may possess distinct chromatin marks. Using a T cell model and both genome-wide and gene-focused approaches, we examined the chromatin characteristics of genes that respond to T cell activation.

Results

To facilitate comparison of genes with similar basal expression levels, we used expression-profiling data to bin genes according to their basal expression levels. We found that inducible genes in the lower basal expression bins, especially rapidly induced primary response genes, were more likely than their non-responsive counterparts to display the histone modifications of active genes, have RNA polymerase II (Pol II) at their promoters and show evidence of ongoing basal elongation. There was little or no evidence for the presence of active chromatin marks in the absence of promoter Pol II on these inducible genes. In addition, we identified a subgroup of genes with active promoter chromatin marks and promoter Pol II but no evidence of elongation. Following T cell activation, we find little evidence for a major shift in the active chromatin signature around inducible gene promoters but many genes recruit more Pol II and show increased evidence of elongation.

Conclusions

These results suggest that the majority of inducible genes are primed for activation by having an active chromatin signature and promoter Pol II with or without ongoing elongation.  相似文献   

16.
17.

Background

Variation in gene expression is extensive among tissues, individuals, strains, populations and species. The interactions among these sources of variation are relevant for physiological studies such as disease or toxic stress; for example, it is common for pathologies such as cancer, heart failure and metabolic disease to be associated with changes in tissue-specific gene expression or changes in metabolic gene expression. But how conserved these differences are among outbred individuals and among populations has not been well documented. To address this we examined the expression of a selected suite of 192 metabolic genes in brain, heart and liver in three populations of the teleost fish Fundulus heteroclitus using a highly replicated experimental design.

Results

Half of the genes (48%) were differentially expressed among individuals within a population-tissue group and 76% were differentially expressed among tissues. Differences among tissues reflected well established tissue-specific metabolic requirements, suggesting that these measures of gene expression accurately reflect changes in proteins and their phenotypic effects. Remarkably, only a small subset (31%) of tissue-specific differences was consistent in all three populations.

Conclusions

These data indicate that many tissue-specific differences in gene expression are unique to one population and thus are unlikely to contribute to fundamental differences between tissue types. We suggest that those subsets of treatment-specific gene expression patterns that are conserved between taxa are most likely to be functionally related to the physiological state in question.  相似文献   

18.
19.
20.

Key message

A novel rice constitutive promoter (P OsCon1 ) was isolated. The molecular mechanism of the promoter activity was investigated. P OsCon1 could be used as an alternative constitutive promoter for crop transgenic engineering.

Abstract

Monocot constitutive promoter is an important resource for crop transgenic engineering. In this report, we isolated a novel promoter, Oscon1 promoter (P OsCon1 ), from the 5′ upstream region of a constitutively expressed rice gene OsDHAR1. In P OsCon1 ::GUS transgenic rice, we showed that P OsCon1 had a broad expression spectrum in all tested tissues. The expression of the promoter was further analyzed in comparison with the previously characterized strong constitutive promoters. P OsCon1 exhibited comparable activity to OsCc1, OsAct1 or ZmUbi promoters in most tissues, and more active than 35S promoter in roots, seeds, and calli. Further quantitative assays indicated that P OsCon1 activity was not affected by developmental stages or by environmental factors. Further, 5′-deletions analysis indicated that the distinct regions might contribute to the strong expression of P OsCon1 in different tissues. Overall, our results suggest that P OsCon1 is a novel constitutive promoter, which could potentially use in transgenic crop development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号