首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with cancers in immunocompromised populations. EBV establishes a latent infection and immortalizes and transforms B lymphocytes. Several latent proteins have profound effects on cellular growth, including activation of NF-kappaB, phosphatidylinositol 3'-OH kinase (PI3K) signaling, and notch signaling. Activation of PI3K can affect the activity of beta-catenin, the target of the wnt signaling pathway. Deregulation of beta-catenin is associated with a number of malignancies. To determine if beta-catenin is regulated by EBV infection, EBV-infected cells were examined for beta-catenin levels and localization. beta-Catenin was increased in EBV-positive tumor cell lines compared to EBV-negative lines, in EBV-infected Burkitt's lymphoma cell lines, and in EBV-transformed lymphoblastoid cell lines (LCL). In contrast to wnt signaling, EBV consistently induced the accumulation of beta-catenin in the cytoplasm but not the nucleus. The beta-catenin regulating kinase, glycogen synthase kinase 3beta (GSK3beta), was shown to be phosphorylated and inactivated in EBV-infected lymphocytes. Inactivated GSK3beta was localized to the nucleus of EBV-infected LCL. Neither the cytoplasmic accumulation of beta-catenin nor the nuclear inactivation of GSK3beta was affected by the inhibition of PI3K signaling. These data indicate that latent infection with EBV has unique effects on beta-catenin signaling that are distinct from activation of wnt and independent of its effects on PI3K.  相似文献   

3.
4.
Coxsackievirus B3 (CVB3) is a common human pathogen for acute myocarditis, pancreatitis, non-septic meningitis, and encephalitis; it induces a direct cytopathic effect (CPE) and apoptosis on infected cells. The Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT/PKB)/mammalian target of Rapamycin (mTOR) signaling pathway regulates several cellular processes and it is one of the most important pathways in human networks. However, the effect and mechanism of PI3K/AKT/mTOR signaling pathway in CVB3 infected cells are poorly understood. In this study, we demonstrate that inhibition of PI3K/AKT/mTOR signaling pathway increased CVB3-induced CPE and apoptosis in HeLa cells. The activity of downstream targets of PI3K and mTOR is attenuated after CVB3 infection and inhibitors of PI3K and mTOR made their activity to decrease more significantly. We further show that LY294002 and Rapamycin, the inhibitor of PI3K and mTOR respectively, promote CVB3-induced CPE and apoptosis. Taken together, these data illustrate a new and imperative role for PI3K/AKT/mTOR signaling in CVB3 infection in HeLa cells and suggest an useful approach for the therapy of CVB3 infection.  相似文献   

5.
6.
Inhibition of alanyl-aminopeptidase (APN, CD13) gene expression or enzymatic activity compromises T cell proliferation and function. Molecular mechanisms mediating these effects are not known as yet. Recently, we found the expression of the proto-oncogen Wnt-5a to be strongly affected by APN-inhibition. Wnt-5a and other members of the Wnt family of secreted factors are implicated in cell growth and differentiation. Here, we analyzed by quantitative RT-PCR and immunoblotting the expression in mitogen-activated T cells of a major constituent of the Wnt-5a pathway, glycogen synthase kinase-3beta (GSK-3beta). T cell activation by phytohaemagglutinin or pokeweed mitogen results in a strong increase of GSK-3beta mRNA amounts. At the protein level, we observed an up-regulation of both GSK-3beta and phosphorylated GSK-3beta. This induction-dependent increase of GSK-3beta is markedly reduced in response to inhibitors of alanyl-aminopeptidase, actinonin, leuhistin, and RB3014. These findings may provide a rational for the growth inhibition resulting from a diminished expression or activity of alanyl aminopeptidase.  相似文献   

7.
Several polycations were tested for their abilities to inhibit the activity of glycogen synthase kinase 3 (GSK-3). L-Polylysine was the most powerful inhibitor of GSK-3 with half-maximal inhibition of glycogen synthase phosphorylation occurring at approx. 100 nM. D-Polylysine and histone H1 were also inhibitory, but the concentration dependence was complex, and DL-polylysine was the least effective inhibitor. Spermine caused about 50% inhibition of GSK-3 at 0.7 mM and 70% inhibition at 4 mM. Inhibition of GSK-3 by L-polylysine could be blocked or reversed by heparin. A heat-stable polycation antagonist isolated from swine kidney cortex also blocked the inhibitory effect of L-polylysine on GSK-3 and blocked histone H1 stimulation of protein phosphatase 2A activity. Under the conditions tested, L-polylysine also inhibited GSK-3 catalyzed phosphorylation of type II regulatory subunit of cAMP-dependent protein kinase and a 63 kDa brain protein, but only slightly inhibited phosphorylation of inhibitor 2 or proteolytic fragments of glycogen synthase that contain site 3 (a + b + c). L-Polylysine at a concentration (200 nM) that caused nearly complete inhibition of GSK-3 stimulated casein kinase I and casein kinase II, but had virtually no effect on the catalytic subunit of cAMP-dependent protein kinase. These results suggest that polycations can be useful in controlling GSK-3 activity. Polycations have the potential to decrease the phosphorylation state of glycogen synthase at site 3, both by inhibiting GKS-3 as shown in this study and by stimulating the phosphatase reaction as shown previously (Pelech, S. and Cohen, P. (1985) Eur. J. Biochem. 148, 245-251).  相似文献   

8.
9.
Protein kinase B (PKB)/Akt is known to promote cell migration, and this may contribute to the enhanced invasiveness of malignant cells. To elucidate potential mechanisms by which PKB/Akt promotes the migration phenotype, we have investigated its role in the endosomal transport and recycling of integrins. Whereas the internalization of alpha v beta 3 and alpha 5 beta 1 integrins and their transport to the recycling compartment were independent of PKB/Akt, the return of these integrins (but not internalized transferrin) to the plasma membrane was regulated by phosphatidylinositol 3-kinases and PKB/Akt. The blockade of integrin recycling and cell spreading on integrin ligands effected by inhibition of PKB/Akt was reversed by inhibition of glycogen synthase kinase 3 (GSK-3). Moreover, expression of nonphosphorylatable active GSK-3 beta mutant GSK-3 beta-A9 suppressed recycling of alpha 5 beta 1 and alpha v beta 3 and reduced cell spreading on ligands for these integrins, indicating that PKB/Akt promotes integrin recycling by phosphorylating and inactivating GSK-3. We propose that the ability of PKB/Akt to act via GSK-3 to promote the recycling of matrix receptors represents a key mechanism whereby integrin function and cell migration can be regulated by growth factors.  相似文献   

10.
Glycogen synthase kinase 3beta (GSK3beta) is an essential protein kinase that regulates numerous functions within the cell. One critically important substrate of GSK3beta is the microtubule-associated protein tau. Phosphorylation of tau by GSK3beta decreases tau-microtubule interactions. In addition to phosphorylating tau, GSK3beta is a downstream regulator of the wnt signaling pathway, which maintains the levels of beta-catenin. Axin plays a central role in regulating beta-catenin levels by bringing together GSK3beta and beta-catenin and facilitating the phosphorylation of beta-catenin, targeting it for ubiquitination and degradation by the proteasome. Although axin clearly facilitates the phosphorylation of beta-catenin, its effects on the phosphorylation of other GSK3beta substrates are unclear. Therefore in this study the effects of axin on GSK3beta-mediated tau phosphorylation were examined. The results clearly demonstrate that axin is a negative regulator of tau phosphorylation by GSK3beta. This negative regulation of GSK3beta-mediated tau phosphorylation is due to the fact that axin efficiently binds GSK3beta but not tau and thus sequesters GSK3beta away from tau, as an axin mutant that does not bind GSK3beta did not inhibit tau phosphorylation by GSK3beta. This is the first demonstration that axin negatively affects the phosphorylation of a GSK3beta substrate, and provides a novel mechanism by which tau phosphorylation and function can be regulated within the cell.  相似文献   

11.
12.
13.
25-hydroxycholesterol (25-OH-chol) induces apoptosis in many cell types. The present study investigated the possible involvement of mitochondria-dependent apoptotic signalling molecules in the death of PC12 cells treated with 25-OH-chol. 25-OH-chol increased the production of reactive oxygen species and opened mitochondrial permeability transition pore, resulting in release of cytochrome c and subsequent activation of caspase-9 and -3. 25-OH-chol induced the activation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-3beta (GSK-3beta). The JNK inhibitor SP600125 attenuated the activation of caspase-9 and -3 and reduced 25-OH-chol-induced cell death. GSK inhibitors SB415286 and SB216763 significantly down-regulated JNK activity and attenuated the cytotoxicity of 25-hydroxycholesterol. However, SP600125 did not alter the activity of GSK-3beta. The results indicate that 25-OH-chol induces cell death via activation of GSK-3beta and subsequent up-regulation of JNK. Pharmacological intervention of GSK-3beta-JNK-caspase signalling pathway may be useful for the reduction of cytotoxicity of oxysterols.  相似文献   

14.
Glycogen synthase kinase 3beta (GSK3beta) is a key component in many biological processes including insulin and Wnt signaling. Since the activation of each signaling pathway results in a decrease in GSK3beta activity, we examined the specificity of their downstream effects in the same cell type. Insulin induces an increased activity of glycogen synthase but has no influence on the protein level of beta-catenin. In contrast, Wnt increases the cytosolic pool of beta-catenin but not glycogen synthase activity. We found that, unlike insulin, neither the phosphorylation status of the serine9 residue of GSK3beta nor the activity of protein kinase B is regulated by Wnt. Although the decrease in GSK3beta activity is required, GSK3beta may not be the limiting component for Wnt signaling in the cells that we examined. Our results suggest that the axin-conductin complexed GSK3beta may be dedicated to Wnt rather than insulin signaling. Insulin and Wnt pathways regulate GSK3beta through different mechanisms, and therefore lead to distinct downstream events.  相似文献   

15.
16.
17.
Reelin is a large secreted protein that controls cortical layering by signaling through the very low density lipoprotein receptor and apolipoprotein E receptor 2, thereby inducing tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1) and suppressing tau phosphorylation in vivo. Here we show that binding of Reelin to these receptors stimulates phosphatidylinositol 3-kinase, resulting in activation of protein kinase B and inhibition of glycogen synthase kinase 3beta. We present genetic evidence that this cascade is dependent on apolipoprotein E receptor 2, very low density lipoprotein receptor, and Dab1. Reelin-signaling components are enriched in axonal growth cones, where tyrosine phosphorylation of Dab1 is increased in response to Reelin. These findings suggest that Reelin-mediated phosphatidylinositol 3-kinase signaling in neuronal growth cones contributes to final neuron positioning in the mammalian brain by local modulation of protein kinase B and glycogen synthase kinase 3beta kinase activities.  相似文献   

18.
Zhang YJ  Xu YF  Liu YH  Yin J  Wang JZ 《FEBS letters》2005,579(27):6230-6236
Nitric oxide is associated with neurofibrillary tangle, which is composed mainly of hyperphosphorylated tau in the brain of Alzheimer's disease (AD). However, the role of nitric oxide in tau hyperphosphorylation is unclear. Here we show that nitric oxide produced by sodium nitroprusside (SNP), a recognized donor of nitric oxide, induces tau hyperphosphorylation at Ser396/404 and Ser262 in HEK293/tau441 cells with a simultaneous activation of glycogen synthase kinase-3beta (GSK-3beta). Pretreatment of the cells with 10 mM lithium chloride (LiCl), an inhibitor of GSK-3, 1 h before SNP administration inhibits GSK-3beta activation and prevents tau from hyperphosphorylation. This is the first direct evidence demonstrating that nitric oxide induces AD-like tau hyperphosphorylation in vitro, and GSK-3beta activation is partially responsible for the nitric oxide-induced tau hyperphosphorylation. It is suggested that nitric oxide may be an upstream element of tau abnormal hyperphosphorylation in AD.  相似文献   

19.
Agents that elevate intracellular cyclic AMP (cAMP) levels promote neuronal survival in a manner independent of neurotrophic factors. Inhibitors of phosphatidylinositol 3 kinase and dominant-inactive mutants of the protein kinase Akt do not block the survival effects of cAMP, suggesting that another signaling pathway is involved. In this report, we demonstrate that elevation of intracellular cAMP levels in rat cerebellar granule neurons leads to phosphorylation and inhibition of glycogen synthase kinase 3beta (GSK-3beta). The increased phosphorylation of GSK-3beta by protein kinase A (PKA) occurs at serine 9, the same site phosphorylated by Akt. Purified PKA is able to phosphorylate recombinant GSK-3beta in vitro. Inhibitors of GSK-3 block apoptosis in these neurons, and transfection of neurons with a GSK-3beta mutant that cannot be phosphorylated interferes with the prosurvival effects of cAMP. These data suggest that activated PKA directly phosphorylates GSK-3beta and inhibits its apoptotic activity in neurons.  相似文献   

20.
To characterize the contribution of glycogen synthase kinase 3beta (GSK3beta) inactivation to insulin-stimulated glucose metabolism, wild-type (WT-GSK), catalytically inactive (KM-GSK), and uninhibitable (S9A-GSK) forms of GSK3beta were expressed in insulin-responsive 3T3-L1 adipocytes using adenovirus technology. WT-GSK, but not KM-GSK, reduced basal and insulin-stimulated glycogen synthase activity without affecting the -fold stimulation of the enzyme by insulin. S9A-GSK similarly decreased cellular glycogen synthase activity, but also partially blocked insulin stimulation of the enzyme. S9A-GSK expression also markedly inhibited insulin stimulation of IRS-1-associated phosphatidylinositol 3-kinase activity, but only weakly inhibited insulin-stimulated Akt/PKB phosphorylation and glucose uptake, with no effect on GLUT4 translocation. To further evaluate the role of GSK3beta in insulin signaling, the GSK3beta inhibitor lithium was used to mimic the consequences of insulin-stimulated GSK3beta inactivation. Although lithium stimulated the incorporation of glucose into glycogen and glycogen synthase enzyme activity, the inhibitor was without effect on GLUT4 translocation and pp70 S6 kinase. Lithium stimulation of glycogen synthesis was insensitive to wortmannin, which is consistent with its acting directly on GSK3beta downstream of phosphatidylinositol 3-kinase. These data support the hypothesis that GSK3beta contributes to insulin regulation of glycogen synthesis, but is not responsible for the increase in glucose transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号