首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A steady flow, in vitro model of distal arterial bypass graft junctions was used to examine the effects of junction angle and flow rate on the local velocity field. Three test sections were fabricated from Plexiglas tubing having anastomotic junction angles of either 30, 45, or 60 deg. Flow visualization revealed velocity profiles skewed toward the outer wall with a flow split around a clear stagnation point along the outer wall. Laser Doppler anemometry [LDA] measurements confirmed a distinct stagnation point at the outer wall and both reverse and forward shear were detected immediately upstream and downstream, respectively, of this site. Axial velocities and shear rates along the outer wall were higher than along the inner wall and occurred in the junction angle order: 45, 60, and 30 deg. This study clearly identified changes in wall shear which varied with the anastomotic angle and flow rate.  相似文献   

2.
Wall shear has been widely implicated as a contributing factor in the development of intimal hyperplasia in the anastomoses of chronic arterial bypass grafts. Earlier studies have been restricted to either: (1) in vitro or computer simulation models detailing the complex hemodynamics within an anastomosis without corresponding biological responses, or (2) in vivo models that document biological effects with only approximate wall shear information. Recently, a specially designed pulse ultrasonic Doppler wall shear rate (PUDWSR) measuring device has made it possible to obtain three near-wall velocity measurements nonintrusively within 1.05 mm of the vessel luminal surface from which wall shear rates (WSRs) were derived. It was the purpose of this study to evaluate the effect of graft caliber, a surgically controllable variable, upon local hemodynamics, which, in turn, play an important role in the eventual development of anastomotic hyperplasia. Tapered (4-7 mm I.D.) 6-cm-long grafts were implanted bilaterally in an end-to-side fashion with 30 deg proximal and distal anastomoses to bypass occluded common carotid arteries of 16 canines. The bypass grafts were randomly paired in contralateral vessels and placed such that the graft-to-artery diameter ratio, DR, at the distal anastomosis was either 1.0 or 1.5. For all grafts, the average Re was 432 +/- 112 and the average Womersley parameter, alpha, was 3.59 +/- 0.39 based on artery diameter. There was a sharp skewing of flow toward the artery floor with the development of a stagnation point whose position varied with time (up to two artery diameters) and DR (generally more downstream for DR = 1.0). Mean WSRs along the artery floor for DR = 1.0 and 1.5 were found to range sharply from moderate to high retrograde values (589 s-1 and 1558 s-1, respectively) upstream to high antegrade values (2704 s-1 and 2302 s-1, respectively) immediately downstream of the stagnation point. Although there were no overall differences in mean and peak WSRs between groups, there were significant differences (p < 0.05) in oscillatory WSRs as well as in the absolute normalized mean and peak WSRs between groups. There were also significant differences (p < 0.05) in mean and peak WSRs with respect to axial position along the artery floor for both DR cases. In conclusion, WSR varies widely (1558 s-1 retrograde to 2704 s-1 antegrade) within end-to-side distal graft anastomoses, particularly along the artery floor, and may play a role in the development of intimal hyperplasia through local alteration of mass transport and mechano-signal transduction within the endothelium.  相似文献   

3.
The formation of distal anastomotic intimal hyperplasia (IH), one common mode of bypass graft failure, has been shown to occur in the areas of disturbed flow particular to this site. The nature of theflow in the segment of artery proximal to the distal anastomosis varies from case to case depending on the clinical situation presented. A partial stenosis of a bypassed arterial segment may allow residual prograde flow through the proximal artery entering the distal anastomosis of the graft. A complete stenosis may allow for zero flow in the proximal artery segment or retrograde flow due to the presence of small collateral vessels upstream. Although a number of investigations on the hemodynamics at the distal anastomosis of an end-to-side bypass graft have been conducted, there has not been a uniform treatment of the proximal artery flow condition. As a result, direct comparison of results from study to study may not be appropriate. The purpose of this work was to perform a three-dimensional computational investigation to study the effect of the proximal artery flow condition (i.e., prograde, zero, and retrograde flow) on the hemodynamics at the distal end-to-side anastomosis. We used the finite volume method to solve the full Navier-Stokes equations for steady flow through an idealized geometry of the distal anastomosis. We calculated the flow field and local wall shear stress (WSS) and WSS gradient (WSSG) everywhere in the domain. We also calculated the severity parameter (SP), a quantification of hemodynamic variation, at the anastomosis. Our model showed a marked difference in both the magnitude and spatial distribution of WSS and WSSG. For example, the maximum WSS magnitude on the floor of the artery proximal to the anastomosis for the prograde and zero flow cases is 1.8 and 3.9 dynes/cm2, respectively, while it is increased to 10.3 dynes/cm2 in the retrograde flow case. Similarly, the maximum value of WSSG magnitude on thefloor of the artery proximal to the anastomosis for the prograde flow case is 4.9 dynes/cm3, while it is increased to 13.6 and 24.2 dynes/cm3, respectively, in the zero and retrograde flow cases. The value of SP is highest for the retrograde flow case (13.7 dynes/cm3) and 8.1 and 12.1 percent lower than this for the prograde (12.6 dynes/cm3) and zero (12.0 dynes/cm3) flow cases, respectively. Our model results suggest that the flow condition in the proximal artery is an important determinant of the hemodynamics at the distal anastomosis of end-to-side vascular bypass grafts. Because hemodynamic forces affect the response of vascular endothelial cells, the flow situation in the proximal artery may affect IH formation and, therefore, long-term graft patency. Since surgeons have some control over the flow condition in the proximal artery, results from this study could help determine which flow condition is clinically optimal.  相似文献   

4.
Blood flow was measured in the canine saphenous artery using electromagnetic flowmetry. Significant increase in blood flow was noted after occlusion of the distal femoral artery. However, after raising a saphenous island flap there was no significant change in the blood flow before and after distal femoral artery occlusion. The flap peripheral resistance and blood flow were compared after end-to-end and end-to-side anastomosis and no statistical difference was noted.  相似文献   

5.
The development and progress of distal anastomotic intimal hyperplasia seems to be promoted by altered flow conditions and intramural stress distributions at the region of the artery-graft junction of vascular bypass configurations. From clinical observations, it is known that intimal hyperplasia preferentially occurs at outflow anastomoses of prosthetic bypass grafts. In order to gain a deeper insight into post-operative disease processes, and subsequently, to contribute to the development of improved vascular reconstructions with respect to long term patency rates, detailed studies are required. In context with in vivo experiments, this study was designed to analyze the flow dynamics and wall mechanics in anatomically correct bypass configurations related to two different surgical techniques and resulting geometries (conventional geometry and Miller-cuff). The influence of geometric conditions and of different compliance of synthetic graft, the host artery and the interposed venous cuff on the hemodynamic behavior and on the wall stresses are investigated. The flow studies apply the time-dependent, three-dimensional Navier-Stokes equations describing the motion of an incompressible Newtonian fluid. The vessel walls are described by a geometrically non-linear shell structure. In an iterative coupling procedure, the two problems are solved by means of the finite element method. The numerical results demonstrate non-physiological flow patterns in the anastomotic region. Strongly skewed axial velocity profiles and high secondary velocities occur downstream the artery-graft junction. On the artery floor opposite the junction, flow separation and zones of recirculation are found. The wall mechanical studies show that increased compliance mismatch leads to increased intramural stresses, and thus, may have a proliferative influence on suture line hyperplasia, as it is observed in the in vivo study.  相似文献   

6.
Paroxysmal supraventricular tachycardia is accompanied by hypotension, which can affect vascular hemodynamics. Here, we hypothesized that a fall in blood flow as a result of hypotension has a larger effect on hemodynamics in medium-sized peripheral arteries compared with increased pulsatility in rapid pacing. To test this hypothesis, we experimentally and theoretically investigated hemodynamic changes in femoral, carotid, and subclavian arteries at heart rates of 95-170 beats/min after acute pacing. The arterial pressure, blood flow, and other hemodynamic parameters remained statistically unchanged for heart rates ≤ 135 beats/min. Systemic pressure and flow velocities, however, showed an abrupt decrease, resulting in larger alteration of hemodynamic parameters for heart rates ≥ 155 beats/min after pacing (initial period) and then recovered close to baseline after several minutes of pacing (recovery period). During the initial period, the pressure dropped from 88 mmHg (baseline) to 44 mmHg, and the flow velocity decreased to about one-third of baseline at heart rate of 170 beats/min. A hemodynamic analysis showed a velocity profile with a near-wall retrograde flow or a fully reversed flow during the initial period, which vanished at the recovery period. It was concluded that the initial fall of blood flow due to pressure drop led to transient flow reversal and negative wall shear stress because this phenomena was not observed at the recovery period. This study underscores the significant effects of hypotension on vascular hemodynamics, which may have relevance to physiology and chronic pathophysiology in paroxysmal supraventricular tachycardia.  相似文献   

7.
We consider the effect of geometrical configuration on the steady flow field of representative geometries from an in vivo anatomical data set of end-to-side distal anastomoses constructed as part of a peripheral bypass graft. Using a geometrical classification technique, we select the anastomoses of three representative patients according to the angle between the graft and proximal host vessels (GPA) and the planarity of the anastomotic configuration. The geometries considered include two surgically tunneled grafts with shallow GPAs which are relatively planar but have different lumen characteristics, one case exhibiting a local restriction at the perianastomotic graft and proximal host whilst the other case has a relatively uniform cross section. The third case is nonplanar and characterized by a wide GPA resulting from the graft being constructed superficially from an in situ vein. In all three models the same peripheral resistance was imposed at the computational outflows of the distal and proximal host vessels and this condition, combined with the effect of the anastomotic geometry, has been observed to reasonably reproduce the in vivo flow split. By analyzing the flow fields we demonstrate how the local and global geometric characteristics influences the distribution of wall shear stress and the steady transport of fluid particles. Specifically, in vessels that have a global geometric characteristic we observe that the wall shear stress depends on large scale geometrical factors, e.g., the curvature and planarity of blood vessels. In contrast, the wall shear stress distribution and local mixing is significantly influenced by morphology and location of restrictions, particular when there is a shallow GPA. A combination of local and global effects are also possible as demonstrated in our third study of an anastomosis with a larger GPA. These relatively simple observations highlight the need to distinguish between local and global geometric influences for a given reconstruction. We further present the geometrical evolution of the anastomoses over a series of follow-up studies and observe how the lumen progresses towards the faster bulk flow of the velocity in the original geometry. This mechanism is consistent with the luminal changes in recirculation regions that experience low wall shear stress. In the shallow GPA anastomoses the proximal part of the native host vessel occludes or stenoses earlier than in the case with wide GPA. A potential contribution to this behavior is suggested by the stronger mixing that characterizes anastomoses with large GPA.  相似文献   

8.
This study looks at pulsatile blood flow through four different right coronary arteries, which have been reconstructed from biplane angiograms. A non-Newtonian blood model (the Generalised Power Law), as well as the usual Newtonian model of blood viscosity, is used to study the wall shear stress in each of these arteries over the entire cardiac cycle. The difference between Newtonian and non-Newtonian blood models is also studied over the whole cardiac cycle using the recently generalised global non-Newtonian importance factor. In addition, the flow is studied by considering paths of massless particles introduced into the flow field. The study shows that, when studying the wall shear stress distribution for transient blood flow in arteries, the use of a Newtonian blood model is a reasonably good approximation. However, to study the flow within the artery in greater detail, a non-Newtonian model is more appropriate.  相似文献   

9.
Carotid geometry effects on blood flow and on risk for vascular disease   总被引:2,自引:0,他引:2  
It has been widely observed that atherosclerotic diseases occur at sites with complex hemodynamics, such as artery bifurcations, junctions, and regions of high curvature. These regions usually have very low or highly oscillatory wall shear stress (WSS). In the present work, 3D pulsatile blood flow through a model of the carotid artery bifurcation was simulated using a finite volume numerical method. The goal was to quantify the risk of atherogenesis associated with different carotid artery geometries. A risk scale based on the average WSS on the sinus wall of the internal carotid artery was proposed-a scale that can be used to quantify the effect of the carotid geometry on the relative risk for developing vascular disease. It was found that the bifurcation angle and the out-of-plane angle of the internal carotid artery affect the formation of low stress regions on the carotid walls. The main conclusions are: (a) larger internal carotid artery angles (theta(IC)) generally increase the frequency and the area of blood recirculation and lower the WSS on the sinus wall, hence increasing the risk of plaque build-up; (b) off-plane angles were found to lower the WSS on the sinus for geometries with theta(IC)25 degrees . Larger off-plane angles generally increase the danger of plague build-up; (c) for theta(IC) < 25 degrees , the off-plane angle does not have an obvious effect on the hemodynamic WSS; (d) symmetric bifurcations were found to increase the WSS on the sinus wall and ease the risk of vascular disease.  相似文献   

10.
Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the ve- locity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.  相似文献   

11.
This study looks at blood flow through four different right coronary arteries, which have been reconstructed from bi-plane angiograms. Five non-Newtonian blood models, as well as the usual Newtonian model of blood viscosity, are used to study the wall shear stress in each of these arteries at a particular point in the cardiac cycle. It was found that in the case of steady flow in a given artery, the pattern of wall shear stress is consistent across all models. The magnitude of wall shear stress, however, is influenced by the model used and correlates with graphs of shear stress versus strain for each model. For mid-range velocities of around 0.2 m s(-1) the models are virtually indistinguishable. Local and global non-Newtonian importance factors are introduced, in an attempt to quantify the types of flows where non-Newtonian behaviour is significant. It is concluded that, while the Newtonian model of blood viscosity is a good approximation in regions of mid-range to high shear, it is advisable to use the Generalised Power Law model (which tends to the Newtonian model in those shear ranges in any case) in order to achieve better approximation of wall shear stress at low shear.  相似文献   

12.
High-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome. At low PI, the flow in the dome is similar to a driven cavity flow and is characterized by a quasi-stationary shear layer that delineates the parent artery flow from the recirculating flow within the dome. At high PI, on the other hand, the flow is dominated by vortex ring formation, transport across the neck, and impingement and breakdown at the distal wall of the aneurysm dome. We further show that the spatial and temporal characteristics of the wall shear stress field on the aneurysm dome are strongly correlated with the vortex dynamics across the neck. We finally argue that the ratio between the characteristic time scale of transport by the mean flow across the neck and the time scale of vortex ring formation can be used to predict for a given sidewall aneurysm model the critical value of the waveform PI for which the hemodynamics will transition from the cavity mode to the vortex ring mode.  相似文献   

13.
The observation of intimal hyperplasia at bypass graft anastomoses has suggested a potential interaction between local hemodynamics and vascular wall response. Wall shear has been particularly implicated because of its known effects upon the endothelium of normal vessels and, thus, was examined as to its possible role in the development of intimal hyperplasia in arterial bypass graft distal anastomoses. Tapered (4-7 mm I.D.) e-PTFE synthetic grafts 6 cm long were placed as bilateral carotid artery bypasses in six adult, mongrel dogs weighing between 25 and 30 kg with distal anastomotic graft-to-artery diameter ratios (DR) of either 1.0 or 1.5. Immediately following implantation, simultaneous axial velocity measurements were made in the toe and artery floor regions in the plane of the anastomosis at radial increments of 0.35 mm, 0.70 mm, and 1.05 mm using a specially designed 20 MHz triple crystal ultrasonic wall shear rate transducer Mean, peak, and pulse amplitude wall shear rates (WSRs), their absolute values, the spatial and temporal wall shear stress gradients (WSSG), and the oscillatory shear index (OSI) were computed from these velocity measurements. All grafts were harvested after 12 weeks implantation and measurements of the degree of intimal hyperplasia (IH) were made along the toe region and the artery floor of the host artery in 1 mm increments. While some IH occurred along the toe region (8.35+/-23.1 microm) and was significantly different between DR groups (p<0.003), the greatest amount occurred along the artery floor (81.6+/-106.5 microm, mean +/- S.D.) (p < 0.001) although no significant differences were found between DR groups. Linear regressions were performed on the paired IH and mean, peak, and pulse amplitude WSR data as well as the absolute mean, peak, and pulse amplitude WSR data from all grafts. The mean and absolute mean WSRs showed a modest correlation with IH (r = -0.406 and -0.370, respectively) with further improvements seen (r = -0.482 and -0.445, respectively) when using an exponential relationship. The overall best correlation was seen against an exponential function of the OSI (r = 0.600). Although these correlation coefficients were not high, they were found to be statistically significant as evidenced by the large F-statistic obtained. Finally, it was observed that over 75 percent of the IH occurred at or below a mean WSR value of 100 s(-1) while approximately 92 percent of the IH occurred at or below a mean WSR equal to one-half that of the native artery. Therefore, while not being the only factor involved, wall shear (and in particular, oscillators wall shear) appears to provide a stimulus for the development of anastomotic intimal hyperplasia.  相似文献   

14.
15.
16.
Because premenopausal women have lower cardiovascular morbidity than postmenopausal women, it has been proposed that estrogen may have a protective role. Estrogen is involved in smooth muscle relaxation both through its specific receptor as well as through calcium channel blockade. This study examined the acute effect of estradiol on invasive cardiovascular hemodynamics in 18 postmenopausal women (age 62.6 +/- 7.6 years, means +/- SD). The effect of estradiol on left ventricular chamber performance was studied in 9 women using simultaneous left ventricular pressure-volume recordings. In a further group of 9 women, the acute effect of estradiol on arterial function was assessed using input impedance (derived from simultaneous aortic pressure and flow recordings), pressure waveform analysis, and pulse wave velocity. After 2 mg micronized 17beta-estradiol was administered, serum estradiol levels increased from 50.9 +/- 21.9 to 3,190 +/- 2,216 pmol/l, P < 0.0001. There was no effect of estradiol on either left ventricular inotropic or lusitropic function. There was no acute effect of estradiol on arterial impedance, reflection coefficient, augmentation index, or pulse wave velocity. There was a trend to decreased heart rate and cardiac output in both groups of 9 women. Because heart rate and cardiac output were common to both hemodynamic data sets, results for these parameters were pooled. Across all 18 women, there was a small but significant decrease in heart rate (69.2 +/- 10.4 vs. 67.2 +/- 9.9 beats/min, P = 0.02), as well as a significant decrease in cardiac output (4.82 +/- 1.77 vs. 4.17 +/- 1.56 l/min, P = 0.002). Despite achieving supraphysiological serum levels, this study found no significant effect of acute 17beta-estradiol on ventricular or large artery function.  相似文献   

17.
18.

Background

Coronary artery bypass grafting surgery is an effective treatment modality for patients with severe coronary artery disease. The conduits used during the surgery include both the arterial and venous conduits. Long- term graft patency rate for the internal mammary arterial graft is superior, but the same is not true for the saphenous vein grafts. At 10 years, more than 50% of the vein grafts would have occluded and many of them are diseased. Why do the saphenous vein grafts fail the test of time? Many causes have been proposed for saphenous graft failure. Some are non-modifiable and the rest are modifiable. Non-modifiable causes include different histological structure of the vein compared to artery, size disparity between coronary artery and saphenous vein. However, researches are more interested in the modifiable causes, such as graft flow dynamics and wall shear stress distribution at the anastomotic sites. Formation of intimal hyperplasia at the anastomotic junction has been implicated as the root cause of long- term graft failure.Many researchers have analyzed the complex flow patterns in the distal sapheno-coronary anastomotic region, using various simulated model in an attempt to explain the site of preferential intimal hyperplasia based on the flow disturbances and differential wall stress distribution. In this paper, the geometrical bypass models (aorto-left coronary bypass graft model and aorto-right coronary bypass graft model) are based on real-life situations. In our models, the dimensions of the aorta, saphenous vein and the coronary artery simulate the actual dimensions at surgery. Both the proximal and distal anastomoses are considered at the same time, and we also take into the consideration the cross-sectional shape change of the venous conduit from circular to elliptical. Contrary to previous works, we have carried out computational fluid dynamics (CFD) study in the entire aorta-graft-perfused artery domain. The results reported here focus on (i) the complex flow patterns both at the proximal and distal anastomotic sites, and (ii) the wall shear stress distribution, which is an important factor that contributes to graft patency.

Methods

The three-dimensional coronary bypass models of the aorto-right coronary bypass and the aorto-left coronary bypass systems are constructed using computational fluid-dynamics software (Fluent 6.0.1). To have a better understanding of the flow dynamics at specific time instants of the cardiac cycle, quasi-steady flow simulations are performed, using a finite-volume approach. The data input to the models are the physiological measurements of flow-rates at (i) the aortic entrance, (ii) the ascending aorta, (iii) the left coronary artery, and (iv) the right coronary artery.

Results

The flow field and the wall shear stress are calculated throughout the cycle, but reported in this paper at two different instants of the cardiac cycle, one at the onset of ejection and the other during mid-diastole for both the right and left aorto-coronary bypass graft models. Plots of velocity-vector and the wall shear stress distributions are displayed in the aorto-graft-coronary arterial flow-field domain. We have shown (i) how the blocked coronary artery is being perfused in systole and diastole, (ii) the flow patterns at the two anastomotic junctions, proximal and distal anastomotic sites, and (iii) the shear stress distributions and their associations with arterial disease.

Conclusion

The computed results have revealed that (i) maximum perfusion of the occluded artery occurs during mid-diastole, and (ii) the maximum wall shear-stress variation is observed around the distal anastomotic region. These results can enable the clinicians to have a better understanding of vein graft disease, and hopefully we can offer a solution to alleviate or delay the occurrence of vein graft disease.
  相似文献   

19.
20.
Melatonin is synthesized and released into the circulation by the pineal gland in a circadian rhythm. Melatonin has been demonstrated to differentially alter blood flow to assorted vascular beds by the activation of different melatonin receptors in animal models. The purpose of the present study was to determine the effect of melatonin on blood flow to various vascular beds in humans. Renal (Doppler ultrasound), forearm (venous occlusion plethysmography), and cerebral blood flow (transcranial Doppler), arterial blood pressure, and heart rate were measured in 10 healthy subjects (29±1 yr; 5 men and 5 women) in the supine position for 3 min. The protocol began 45 min after the ingestion of either melatonin (3 mg) or placebo (sucrose). Subjects returned at least 2 days later at the same time of day to repeat the trial after ingesting the other substance. Melatonin did not alter heart rate and mean arterial pressure. Renal blood flow velocity (RBFV) and renal vascular conductance (RVC) were lower during the melatonin trial compared with placebo (RBFV, 40.5±2.9 vs. 45.4±1.5 cm/s; and RVC, 0.47±0.02 vs. 0.54±0.01 cm·s(-1)·mmHg(-1), respectively). In contrast, forearm blood flow (FBF) and forearm vascular conductance (FVC) were greater with melatonin compared with placebo (FBF, 2.4±0.2 vs. 1.9±0.1 ml·100 ml(-1)·min(-1); and FVC, 0.029±0.003 vs. 0.023±0.002 arbitrary units, respectively). Melatonin did not alter cerebral blood flow measurements compared with placebo. Additionally, phentolamine (5-mg bolus) after melatonin reversed the decrease in RVC, suggesting that melatonin increases sympathetic outflow to the kidney to mediate renal vasoconstriction. In summary, exogenous melatonin differentially alters vascular blood flow in humans. These data suggest the complex nature of melatonin on the vasculature in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号