首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the role of respiratory epithelial cells in the inflammatory response to inhaled endotoxin, we selectively inhibited NF-kappa B activation in the respiratory epithelium using a mutant I kappa B-alpha construct that functioned as a dominant negative inhibitor of NF-kappa B translocation (dnI kappa B-alpha). We developed two lines of transgenic mice in which expression of dnI kappa B-alpha was targeted to the distal airway epithelium using the human surfactant apoprotein C promoter. Transgene expression was localized to the epithelium of the terminal bronchioles and alveoli. After inhalation of LPS, nuclear translocation of NF-kappa B was evident in bronchiolar epithelium of nontransgenic but not of transgenic mice. This defect was associated with impaired neutrophilic lung inflammation 4 h after LPS challenge and diminished levels of TNF-alpha, IL-1 beta, macrophage inflammatory protein-2, and KC in lung homogenates. Expression of TNF-alpha within bronchiolar epithelial cells and of VCAM-1 within peribronchiolar endothelial cells was reduced in transgenic animals. Thus targeted inhibition of NF-kappa B activation in distal airway epithelial cells impaired the inflammatory response to inhaled LPS. These data provide causal evidence that distal airway epithelial cells and the signals they transduce play a physiological role in lung inflammation in vivo.  相似文献   

2.
Rosmarinic acid inhibits lung injury induced by diesel exhaust particles   总被引:8,自引:0,他引:8  
Epidemiological and experimental studies have suggested that diesel exhaust particles (DEP) may be involved in recent increases in lung diseases. DEP has been shown to generate reactive oxygen species. Intratracheal instillation of DEP induces lung inflammation and edema in mice. Rosmarinic acid is a naturally occurring polyphenol with antioxidative and anti-inflammatory activities. We investigated the effects of rosmarinic acid on lung injury induced by intratracheal administration of DEP (500 microg/body) in mice. Oral supplementation with administration of rosmarinic acid (2 mg/body for 3 d) inhibited DEP-induced lung injury, which was characterized by neutrophil sequestration and interstitial edema. DEP enhanced the lung expression of keratinocyte chemoattractant (KC), interleukin-1beta, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1alpha, which was inhibited by treatment with rosmarinic acid. DEP enhanced expression of iNOS mRNA and formation of nitrotyrosine and 8-OHdG in the lung, which was also inhibited by rosmarinic acid. These results suggest that rosmarinic acid inhibits DEP-induced lung injury by the reduction of proinflammatory molecule expression. Antioxidative activities of rosmarinic acid may also contribute to its protective effects.  相似文献   

3.
The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activated in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.  相似文献   

4.
Hypertriglyceridemia is an important risk factor for atherosclerosis, especially in obesity. Macrophages are one of the primary cell types involved in atherogenesis and are thought to contribute to lesion formation through both lipid accumulation and proinflammatory gene expression. In this study, we sought to determine the direct impact of triglyceride (TG)-rich VLDL-induced lipid accumulation on macrophage proinflammatory processes. Incubation of mouse peritoneal macrophages with 100 microg/ml VLDL for 6 h led to 2.8- and 3.7-fold increases in intracellular TGs and FFAs, respectively (P < 0.05). The inflammatory proteins tumor necrosis factor-alpha, interleukin-1beta, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, matrix metalloproteinase 3 (MMP3), and macrophage inflammatory protein-1alpha (MIP-1alpha) were all upregulated by at least 2-fold (P < 0.05) in a dose-dependent manner in VLDL-treated macrophages. The increase in inflammatory gene expression coincided with the phosphorylation of the mitogen-activated protein kinase (MAPK) pathway members extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38 MAPK and was ameliorated by U0126, an inhibitor of ERK1/2. Inhibition of extracellular TG hydrolysis with tetrahydrolipstatin (Orlistat) resulted in the absence of intracellular TG and FFA accumulation and was accompanied by the amelioration of ERK1/2 phosphorylation and MIP-1alpha gene expression. These data indicate that VLDL hydrolysis, and the subsequent accumulation of intracellular FFAs and TGs, plays a substantive role in mediating the proinflammatory effects of VLDL. These data have important implications for the direct proatherogenic effects of VLDL on macrophage-driven atherosclerosis.  相似文献   

5.
Arterial injury triggers an inflammatory response in part mediated by induction of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and is implicated in neointimal thickening. Since HDL is known to reduce cytokine-activated VCAM-1 expression, we tested the hypothesis that VCAM-1 expression and neontimal thickening following arterial injury are inhibited by reconstituted human HDL containing plasma-derived apoA-1 (rHDL). We used the carotid cuff injury in apoE (-/-) mice fed high cholesterol. Mice received rHDL (40 mg/kg) intravenously every other day for 3 weeks. Compared to control, rHDL treatment inhibited neointima formation (0. 008 +/- 0.004 mm(2) vs. 0.037 +/- 0.019 mm(2); P < 0.01) 21 days after injury, reduced VCAM-1 expression, and decreased monocyte/macrophage infiltration as assessed by histomorphometric analysis within the first week after injury. These changes occurred without any effect on plasma total and HDL cholesterol levels as well as the arterial tissue cholesterol levels. rHDL treatment also reduced the formation of modified lipoprotein in the arterial wall compared to control within the first week after injury. This finding suggests an antioxidant effect of rHDL associated with reduced VCAM-1 expression and neointimal formation after arterial injury.  相似文献   

6.
The chemokine monocyte chemoattractant protein-1 is a potent chemoattractant for monocytes. Monocyte chemoattractant protein-1 is produced by vascular endothelial cells during inflammatory diseases such as atherosclerosis. In this study, we examined the effects of a thiazolidinedione on monocyte chemoattractant protein-1 expression in human vascular endothelial cells. In human vascular endothelial cells, interleukin-1beta and tumor necrosis factor-alpha induced endogenous monocyte chemoattractant protein-1 protein secretion, mRNA expression and promoter activity. The thiazolidinedione inhibited these effects. In summary, our results indicated that the suppression of the expression of monocyte chemoattractant protein-1 can be accomplished by thiazolidinedione treatment, raising the possibility that thiazolidinedione may be of therapeutic value in the treatment of diseases such as atherosclerosis.  相似文献   

7.
The anti-inflammatory effect of acetylsalicylic acid (ASA) has been thought to be secondary to the inhibition of prostaglandin synthesis. Because doses of ASA necessary to treat chronic inflammatory diseases are much higher than those needed to inhibit prostaglandin synthesis, a prostaglandin-independent pathway has been emerging as the new anti-inflammatory mechanism of ASA. Here, we examined the effect of ASA on the interleukin (IL)-1 beta- and tumor necrosis factor (TNF)-alpha-induced proinflammatory cytokine expression and evaluated whether this effect is closely linked to the nuclear factor (NF)-kappa B/I kappa B-alpha pathway. A high dose of ASA blocked IL-1 beta- and TNF-alpha-induced TNF-alpha and IL-8 expression, respectively. ASA inhibited TNF-alpha-induced activation of NF-kappa B by preventing phosphorylation and subsequent degradation of I kappa B-alpha in a prostanoid-independent manner. TNF-alpha-induced activation of I kappa B kinase was also suppressed by ASA pretreatment. These observations suggest that the anti-inflammatory effect of ASA in lung epithelial cells may be due to suppression of I kappa B kinase activity, which thereby inhibits subsequent phosphorylation and degradation of I kappa B-alpha, activation of NF-kappa B, and proinflammatory cytokine expression in lung epithelial cells.  相似文献   

8.
Extravascular fibrin deposition is an early and persistent hallmark of inflammatory responses. Fibrin is generated from plasma-derived fibrinogen, which escapes the vasculature in response to endothelial cell retraction at sites of inflammation. Our ongoing efforts to define the physiologic functions of extravasated fibrin(ogen) have led to the discovery, reported here, that fibrinogen stimulates macrophage chemokine secretion. Differential mRNA expression analysis and RNase protection assays revealed that macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 are fibrinogen inducible in the RAW264.7 mouse macrophage-like cell line, and ELISA confirmed that both RAW264.7 cells and primary murine thioglycolate-elicited peritoneal macrophages up-regulate the secretion of monocyte chemoattractant protein-1 >100-fold upon exposure to fibrinogen. Human U937 and THP-1 precursor-1 (THP-1) monocytic cell lines also secreted chemokines in response to fibrinogen, upon activation with IFN-gamma and differentiation with vitamin D(3), respectively. LPS contamination could not account for our observations, as fibrinogen-induced chemokine secretion was sensitive to heat denaturation and was unaffected by the pharmacologic LPS antagonist polymyxin B. Nevertheless, fibrinogen- and LPS-induced chemokine secretion both apparently required expression of functional Toll-like receptor 4, as each was diminished in macrophages derived from C3H/HeJ mice. Thus, innate responses to fibrinogen and bacterial endotoxin may converge at the evolutionarily conserved Toll-like recognition molecules. Our data suggest that extravascular fibrin(ogen) induces macrophage chemokine expression, thereby promoting immune surveillance at sites of inflammation.  相似文献   

9.
During malaria infection, high levels of proinflammatory molecules (e.g., cytokines, chemokines) correlate with disease severity. Even if their role as activators of the host immune response has been studied, the direct contribution of hemozoin (HZ), a parasite metabolite, to such a strong induction is not fully understood. Previous in vitro studies demonstrated that both Plasmodium falciparum HZ and synthetic HZ (sHZ), beta-hematin, induce macrophage/monocyte chemokine and proinflammatory cytokine secretion. In the present study, we investigated the proinflammatory properties of sHZ in vivo. To this end, increasing doses of sHZ were injected either i.v. or into an air pouch generated on the dorsum of BALB/c mice over a 24-h period. Our results showed that sHZ is a strong modulator of leukocyte recruitment and more specifically of neutrophil and monocyte populations. In addition, evaluation of chemokine and cytokine mRNA and protein expression revealed that sHZ induces the expression of chemokines, macrophage-inflammatory protein (MIP)-1alpha/CCL3, MIP-1beta/CCL4, MIP-2/CXCL2, and monocyte chemoattractant protein-1/CCL2; chemokine receptors, CCR1, CCR2, CCR5, CXCR2, and CXCR4; cytokines, IL-1beta and IL-6; and myeloid-related proteins, S100A8, S100A9, and S100A8/A9, in the air pouch exudates. Of interest, chemokine and cytokine mRNA up-regulation were also detected in the liver of i.v. sHZ-injected mice. In conclusion, our study demonstrates that sHZ is a potent proinflammatory agent in vivo, which could contribute to the immunopathology related to malaria.  相似文献   

10.
11.
12.
Myocardial infarction is associated with the rapid induction of mononuclear cell chemoattractants that promote monocyte infiltration into the injured area. Monocyte-to-macrophage differentiation and macrophage proliferation allow a long survival of monocytic cells, critical for effective healing of the infarct. In a canine infarction-reperfusion model, newly recruited myeloid leukocytes were markedly augmented during early reperfusion (5-72 h). By 7 days, the number of newly recruited myeloid cells was reduced, and the majority of the inflammatory cells remaining in the infarct were mature macrophages. Macrophage colony-stimulating factor (MCSF) is known to facilitate monocyte survival, monocyte-to-macrophage conversion, and macrophage proliferation. We demonstrated marked induction of MCSF mRNA in ischemic segments persisting for at least 5 days after reperfusion. MCSF expression was predominantly localized to mature macrophages infiltrating the infarcted myocardium; the expression of the MCSF receptor, c-Fms, a protein with tyrosine kinase activity, was found in these macrophages but was also observed in a subset of microvessels within the infarct. Many infarct macrophages expressed proliferating cell nuclear antigen, a marker of proliferative activity. In vitro MCSF induced monocyte chemoattractant protein-1 synthesis in canine venous endothelial cells. MCSF-induced endothelial monocyte chemoattractant protein-1 upregulation was inhibited by herbimycin A, a tyrosine kinase inhibitor, and by LY-294002, a phosphatidylinositol 3'-kinase inhibitor. We suggest that upregulation of MCSF in the infarcted myocardium may have an active role in healing not only through its effects on cells of monocyte/macrophage lineage, but also by regulating endothelial cell chemokine expression.  相似文献   

13.
The aim of this study was to investigate the role of insulin receptor substrate-2 (IRS-2) mediated signal in macrophages on the accumulation of macrophages in the vascular wall. Mice transplanted with IRS-2−/− bone marrow, a model of myeloid cell restricted defect of IRS-2, showed accumulation of monocyte chemoattractant protein-1-expressing macrophages in the vascular wall. Experiments using cultured peritoneal macrophages showed that IRS-2-mediated signal pathway stimulated by physiological concentrations of insulin, not by IL-4, contributed to the suppression of monocyte chemoattractant protein-1 expression induced by lipopolysaccharide. Our data indicated that IRS-2 deficiency in macrophages enhanced their accumulation in the vascular wall accompanied by increased expression of proinflammatory mediators in macrophages. These results suggest a role for insulin resistance in macrophages in early atherosclerogenesis.  相似文献   

14.
将编码人单核细胞趋化蛋白-1(MCP-1)的基因亚克隆到大肠杆菌表达载体pEX31A中,在大肠杆菌中表达出MS2/MCP-1融合蛋0白,该表达产物约占菌体总蛋白的15%左右,Westernblot检测表明,表达产物可与MCP-1抗体特异反应。采用琼脂糖平板法进行活性测定表明,表达产物具有明显的单核细胞趋化活性,说明N端融合一段细菌蛋白对MCP-1有无趋化活性可能没有影响。  相似文献   

15.
16.
Beta-lactam antibiotics are the class of drug most frequently associated with IgE-mediated allergy but the mechanisms underlying this response are poorly understood. IFN-gamma is a key cytokine in immunity with regulatory actions on monocytes, NK cells, epithelial cells, and T and B lymphocytes. IFN-gamma promotes Th1 responses and inhibits Th2- and IgE-mediated responses. In this study we show, by Western blotting, that the prototype beta-lactam benzylpenicillin (BP) conjugates to human IFN-gamma but not to IL-4. The interaction of BP with IFN-gamma inhibited the cytokine's detection by immunoassay and impaired its activity, as assessed in three different assays: upregulation of MHC molecules on monocytes plus induction of nitric oxide synthesis and expression of monocyte chemoattractant protein-1 mRNA by epithelial cells. This is the first reported example of a direct drug-cytokine interaction and suggests a mechanism by which penicillin may disrupt IFN-gamma-dependent immune responses and promote allergy.  相似文献   

17.
M1 macrophages serve one edge as proinflammatory and M2 macrophages serve the other edge as an anti‐inflammatory macrophage. It appears that a related “switch” in macrophage morphology may also happen in the course of atherosclerosis, which has not yet been elucidated. An atherogenic diet (AD) was given to rats, and induction of macrophage differentiation and the nuclear localization of nuclear factor‐kappa B (NFκB) were investigated by Western blot and immunofluorescence. Chemokines were analyzed using an antibody array with 32 target proteins. M2 macrophage transformation was confirmed in diosgenin‐treated aorta by immunofluorescence and was validated in vitro using THP‐1 cells. MAC387 (macrophage marker) and NFκBp65 (inflammatory hub) were upregulated in oxidatively‐modified low‐density lipoprotein (OxyLDL) and AD‐induced condition. Macrophage differentiation, which induced the formation of inflammatory mediators, was not significantly suppressed by the inhibition of NFκB using dexamethasone. M1 macrophage polarization was identified in OxyLDL‐induced monocytes, which are proinflammatory in nature, whereas M2 macrophage polarization was noticed in diosgenin‐treated monocytes, which exhibit anti‐inflammatory properties. M1‐and M2‐specific chemokines were analyzed using chemokine antibody array. Furthermore, the expression of proinflammatory macrophage (M1) was noticed in AD‐induced aorta and anti‐inflammatory macrophage (M2) was observed in diosgenin‐treated aorta. This is the first report where, unifying the mechanism of diosgenin as aan nti‐atherosclerotic and the expression of M1 and M2 specific chemokines is shown by downregulating NFκB and not by preventing the differentiation of monocyte into a macrophage, but by allowing macrophage to differentiate into M2, which aids in preventing the atherosclerotic progression.  相似文献   

18.
In the present study, we evaluated the role of CCR2 in a model of viral-induced neurologic disease. An orchestrated expression of chemokines, including the CCR2 ligands monocyte chemoattractant protein-1/CCL2 and monocyte chemoattractant protein-3/CCL7, occurs within the CNS following infection with mouse hepatitis virus (MHV). Infection of mice lacking CCR2 (CCR2(-/-)) with MHV resulted in increased mortality and enhanced viral recovery from the brain that correlated with reduced (p < or = 0.04) T cell and macrophage/microglial (determined by F4/80 Ag expression, p < or = 0.004) infiltration into the CNS. Moreover, MHV-infected CCR2(-/-) mice displayed a significant decrease in Th1-associated factors IFN-gamma (p < or = 0.001) and RANTES/CCL5 (p < or = 0.002) within the CNS as compared with CCR2(+/+) mice. Further, peripheral CD4(+) and CD8(+) T cells from immunized CCR2(-/-) mice displayed a marked reduction in IFN-gamma production in response to viral Ag and did not migrate into the CNS of MHV-infected recombination-activating gene (RAG)1(-/-) mice following adoptive transfer. In addition, macrophage/microglial infiltration into the CNS of RAG1(-/-) mice receiving CCR2(-/-) splenocytes was reduced (p < or = 0.05), which correlated with a reduction in the severity of demyelination (p < or = 0.001) as compared with RAG1(-/-) mice receiving splenocytes from CCR2(+/+) mice. Collectively, these results indicate an important role for CCR2 in host defense and disease by regulating leukocyte activation and trafficking.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号