首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
目的:研究大鼠肢体缺血/再灌注后急性肺损伤时,内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(i-NOS)的表达及其在急性肺损伤发生中的作用。方法:雄性Wistar大鼠于后肢根部阻断血流后松解(4h/4h),分别给予L-Arg和氨基胍(AG)预先干预,分为control、IR、L-Arg和AG组,免疫组织化学方法检测肺组织中iNOS和eNOS的表达,同时检测肺组织中MDA、MPO、W/D和NO2^-/NO3^-值,肺组织形态学观察以评价肺损伤的程度。结果:与control组比较,I/R组eNOS表达降低,iNOS表达增强,MDA、MPO、W/D和NO2^-/NO3^-值增加。肺组织充血、炎细胞浸润,肺泡腔渗液;与I/R组比较,L-Arg组eNOS、iNOS表达无明显变化,NO2^-/NO3^-增加。MDA、MPO、W/D降低,肺组织损伤有减轻趋势,AG组eNOS表达无明显变化,iNOS活性降低,NO2^-/NO3^-减少,MDA、MPO、W/D增加,肺组织损伤有加重趋势。结论:肢体缺血/再灌注急性肺损伤过程中,iNOS表达增加,NO生成增多,在肺损伤发生中有一定的保护作用。  相似文献   

2.
Endotoxemia produces hepatic vascular dysregulation resulting from inhibition of endothelin (ET)-stimulated NO production. Mechanisms include overexpression of caveolin-1 (Cav-1) and altered phosphorylation of endothelial nitric oxide (NO) synthase (NOS; eNOS) in sinusoidal endothelial cells. Since ischemia-reperfusion (I/R) also causes vascular dysregulation, we tested whether the mechanisms are the same. Rats were exposed to either mild (30 min) or moderate (60 min) hepatic ischemia in vivo followed by reperfusion (6 h). Livers were harvested and prepared into precision-cut liver slices for in vitro analysis of NOS activity and regulation. Both I/R injuries significantly abrogated both the ET-1 (1 microM) and the ET(B) receptor agonist (IRL-1620, 0.5 microM)-mediated stimulation of NOS activity. 30 min I/R resulted in overexpression of Cav-1 and loss of ET-stimulated phosphorylation of Ser1177 on eNOS, consistent with an inflammatory response. Sixty-minute I/R also resulted in loss of ET-stimulated Ser1177 phosphorylation, but Cav-1 expression was not altered. Moreover, expression of ET(B) receptors was significantly decreased. This suggests that the failure of ET to activate eNOS following 60-min I/R is associated with decreased protein expression consistent with ischemic injury. Thus hepatic vascular dysregulation following I/R is mediated by inflammatory mechanisms with mild I/R whereas ischemic mechanisms dominate following more severe I/R stress.  相似文献   

3.
Ischemic preconditioning (IPC) strongly protects against ischemia-reperfusion injury; however, its effect on subsequent myocardial oxygenation is unknown. Therefore, we determine in an in vivo mouse model of regional ischemia and reperfusion (I/R) if IPC attenuates postischemic myocardial hyperoxygenation and decreases formation of reactive oxygen/nitrogen species (ROS/RNS), with preservation of mitochondrial function. The following five groups of mice were studied: sham, control (I/R), ischemic preconditioning (IPC + I/R, 3 cycles of 5 min coronary occlusion/5 min reperfusion) and IPC + I/R N(G)-nitro-L-arginine methyl ester treated, and IPC + I/R eNOS knockout mice. I/R and IPC + I/R mice were subjected to 30 min regional ischemia followed by 60 min reperfusion. Myocardial Po(2) and redox state were monitored by electron paramagnetic resonance spectroscopy. In the IPC + I/R, but not the I/R group, regional blood flow was increased after reperfusion. Po(2) upon reperfusion increased significantly above preischemic values in I/R but not in IPC + I/R mice. Tissue redox state was measured from the reduction rate of a spin probe, and this rate was 60% higher in IPC than in non-IPC hearts. Activities of NADH dehydrogenase (NADH-DH) and cytochrome c oxidase (CcO) were reduced in I/R mice after 60 min reperfusion but conserved in IPC + I/R mice compared with sham. There were no differences in NADH-DH and CcO expression in I/R and IPC + I/R groups compared with sham. After 60 min reperfusion, strong nitrotyrosine formation was observed in I/R mice, but only weak staining was observed in IPC + I/R mice. Thus IPC markedly attenuates postischemic myocardial hyperoxygenation with less ROS/RNS generation and preservation of mitochondrial O(2) metabolism because of conserved NADH-DH and CcO activities.  相似文献   

4.
Although the induction of myocyte apoptosis by ischemia-reperfusion (I/R) is attenuated by ischemic preconditioning (IPC), the underlying mechanism is not fully understood. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) promotes apoptosis through Akt-dependent and -independent mechanisms. We tested the hypothesis that IPC attenuates the mitochondrial localization of PTEN in the myocardium induced by I/R. Isolated hearts from wild-type mice were exposed to IPC or normal perfusion followed by 30 min of ischemia and reperfusion. IPC attenuated myocardial infarct size and apoptosis after I/R. Heart fractionation showed that mitochondrial PTEN and Bax protein levels and the physical association between them were increased by 30 min of I/R and that IPC attenuated all of these effects of I/R. Muscle-specific PTEN knockout decreased mitochondrial Bax protein levels in the reperfused myocardium and increased cell survival. To determine whether PTEN relocalization to mitochondria was influenced by I/R-induced production of ROS, hearts were perfused with N-acetylcysteine (NAC) to scavenge ROS or H(2)O(2) to mimic I/R-induced ROS. Mitochondrial PTEN protein levels were decreased by NAC and increased by H(2)O(2). PTEN protein overexpression was generated in mouse hearts by adenoviral gene transfer. PTEN overexpression increased mitochondrial PTEN and Bax protein levels and ROS production, whereas muscle-specific PTEN knockout produced the opposite effects. In conclusion, myocardial I/R causes PTEN localization to the mitochondria, related to the generation of ROS; IPC attenuates the mitochondrial localization of PTEN after I/R, potentially inhibiting the translocation of Bax to the mitochondria and resulting in improved cell viability.  相似文献   

5.
Cardiac ischemia may be responsible for either the loss of endothelial nitric oxide synthase (eNOS) or changes in its activity, both conditions leading to coronary dysfunction. We investigated whether early ischemic preconditioning was able to preserve eNOS protein expression and function in the ischemic/reperfused myocardium. Langendorff-perfused rat hearts were subjected to 20 min global ischemia, followed by 30 min reperfusion (I/R). A second group of hearts was treated as I/R, but preconditioned with three cycles of 5 min-ischemia/5 min-reperfusion (IP). Cardiac contractility markedly decreased in I/R, consistently with the rise of creatine kinase (CK) activity in the coronary effluent, whilst ischemic preconditioning significantly improved all functional parameters and reduced the release of CK. Western blot analysis revealed that the amount of eNOS protein decreased by 54.2% in I/R with respect to control (p < 0.01). On the other hand, NOS activity was not significantly reduced in I/R, as well as cGMP tissue levels, suggesting that a parallel compensatory stimulation of this enzymatic activity occurred during ischemia/reperfusion. Ischemic preconditioning completely prevented the loss of eNOS. Moreover, both NOS activity and cGMP tissue level were significantly higher (p < 0.05) in IP (12.7 +/- 0.93 pmol/min/mg prot and 58.1 +/- 12.2 fmol/mg prot, respectively) than I/R (7.34 +/- 2.01 pmol/min/mg prot and 21.4 +/- 4.13 fmol/mg prot, respectively). This suggest that early ischemic preconditioning may be useful to accelerate the complete recovery of endothelial function by preserving the level of cardiac eNOS and stimulating the basal production of nitric oxide.  相似文献   

6.
Despite increased glucose utilization by hypertrophied myocardium, these hearts exhibit a slower rate of glucose uptake (GU). We hypothesized that, in hypertrophied myocardium, a defect of the insulin-responsive glucose transporter is responsible for impaired GU and metabolism during ischemia, contributing to post-ischemic myocardial dysfunction. In a rabbit model of pressure-overload hypertrophy, GU ((31)P NMR spectroscopy) and total/phosphorylated insulin-signaling intermediates were assayed: insulin-receptor, insulin-receptor-substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3-k), GLUT-4 translocation and contractile function in an isolated heart ischemia/reperfusion model. Total protein was not different between hypertrophied and control hearts. Phosphorylation of IRS-1 and PI3-k activity was significantly lower in hypertrophy during ischemia. GU was impaired pre-ischemia in hypertrophy, remained lower during early reperfusion, and was associated with impaired recovery of contractile function. In conclusion, a defect in IRS-1 phosphorylation and PI3-k activation in hypertrophied hearts restricts insulin-mediated GLUT-4 translocation and ischemia, a known stimulus of GLUT-4 translocation, does not compensate for this defect.  相似文献   

7.
8.
Impaired glucose metabolism is implicated in cardiac failure during ischemia-reperfusion. This study examined cardiac glucose uptake and expression of glucose transport-4 (GLUT-4) in dogs undergoing ischemia-reperfusion. Cardiac ischemia was induced by cardiopulmonary bypass for 30 min or 120 min in dogs. Plasma insulin and glucose concentrations were measured at pre-bypass (control), and aortic cross-clamp off (ischemia-reperfusion) at 15, 45, and 75 min. At the same time, the left ventricle biopsies were taken for GLUT-4 immunohistochemistry and glycogen content analysis. In dogs receiving 120-min ischemia, coronary arterial and venous glucose concentrations were increased, but the net glucose uptake in ischemia-reperfusion heart were significantly decreased from 25% (control) to zero at 15 and 45 min of reperfusion, and recovered to only 7% after 75 min reperfusion. Myocardium glycogen contents were decreased by 65%. Plasma insulin levels and Insulin Resistant Index were markedly increased in dogs undergoing 120-min ischemia and reperfusion. These changes were relatively mild and reversible in dogs receiving only 30-min ischemia followed by reperfusion. Expression of total GLUT-4 in myocardium was decreased 40% and translocation of GLUT-4 from cytoplasm to surface membrane was decreased 90% in dogs receiving 120-min ischemia followed by 15-min reperfusion. Suppressed translocation of GLUT-4 was also evident in dogs receiving 30-min ischemia, but to a lesser extent. Reduced myocardium glucose uptake, utilization, and glycogen content are clearly associated with ischemia-reperfusion heart injury. This appears to be due, at least in part, to suppressed expression and translocation of myocardium GLUT-4.  相似文献   

9.
HS Ding  J Yang  FL Gong  J Yang  JW Ding  S Li  YR Jiang 《Gene》2012,509(1):149-153
This study aimed to explore the role of high mobility box 1 (HMGB1) and its receptor toll like receptor 4 (TLR4) on neutrophils in myocardial ischemia reperfusion (I/R) injury. We constructed TLR4-mutant (C3H/HeJ) and control (C3H/HeN) mouse models of myocardial I/R injury and subjected the mice to 30min of ischemia and 6h of reperfusion. Light microscope was used to observe structural changes in the myocardium. HMGB1 levels were measured using quantitative real-time PCR and immunohistochemistry. Neutrophil accumulation, TNF-a expression and IL-8 levels were analyzed via myeloperoxidase (MPO) biochemical studies, quantitative real-time PCR and ELISA, respectively. The results demonstrated that fewer neutrophils infiltrated in the myocardium of TLR4-mutant mice after myocardial I/R and that TLR4 deficiency markedly decreased the ischemic injury caused by ischemia/reperfusion, and inhibited the expression of HMGB1, TNF-a, and IL-8, all of which were up-regulated by ischemia/reperfusion. These findings suggest that HMGB1 plays a central role in recruiting neutrophils during myocardial I/R leading to worsened myocardial I/R injury. This recruitment mechanism is possibly due to its inflammatory and chemokine functions based on the TLR4-dependent pathway.  相似文献   

10.
Ischemic preconditioning (IP) triggers cardioprotection via a signaling pathway that converges on mitochondria. The effects of the inhibition of carnitine palmitoyltransferase I (CPT-I), a key enzyme for transport of long chain fatty acids (LCFA) into the mitochondria, on ischemia/reperfusion (I/R) injury are unknown. Here we investigated, in isolated perfused rat hearts, whether sub-chronic CPT-I inhibition (5 days i.p. injection of 25 mg/kg/day of Etomoxir) affects I/R-induced damages and whether cardioprotection by IP can be induced after this inhibition. Effects of global ischemia (30 min) and reperfusion (120 min) were examined in hearts harvested from Control (untreated), Vehicle- or Etomoxir-treated animals. In subsets of hearts from the three treated groups, IP was induced by three cycles of 3 min ischemia followed by 10 min reperfusion prior to I/R. The extent of I/R injury under each condition was assessed by changes in infarct size as well as in myocardial contractility. Postischemic contractility, as indexed by developed pressure and dP/dt(max), was similarly affected by I/R, and was similarly improved with IP in Control, Vehicle or Etomoxir treated animals. Infarct size was also similar in the three subsets without IP, and was significantly reduced by IP regardless of CPT-I inhibition. We conclude that CPT-I inhibition does not affect I/R damages. Our data also show that IP affords myocardial protection in CPT-I inhibited hearts to a degree similar to untreated animals, suggesting that a long-term treatment with the metabolic anti-ischemic agent Etomoxir does not impede the possibility to afford cardioprotection by ischemic preconditioning.  相似文献   

11.
12.
Ischemic preconditioning (I-PC) induced by brief episodes of ischemia and reperfusion (I/R) protects the heart against sustained I/R. Although activation of mitochondrial K(ATP) channels (mitoK(ATP)) interacting with reactive oxygen species (ROS) has been proposed as a key event in this process, their role in the antiarrhythmic effect is not clear. This study was designed: 1) to investigate the involvement of mito K(ATP) opening in the effect of I-PC (1 cycle of I/R, 5 min each) on ventricular arrhythmias during test ischemia (TI, 30-min LAD coronary artery occlusion) in Langendorff-perfused rat hearts and subsequent postischemic contractile dysfunction, and 2) to characterize potential mechanisms of protection conferred by I-PC and pharmacological PC induced by mito K(ATP) opener diazoxide (DZX), with particular regards to the modulation of ROS generation. Lipid peroxidation (an indicator of increased ROS production) was determined by measurement of myocardial concentration of conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS) in non-ischemic controls, non-preconditioned and preconditioned hearts exposed to TI, I-PC alone, as well as after pretreatment with DZX, mito K(ATP) blocker 5-hydroxydecanoate (5-HD) and antioxidant N-acetylcysteine (NAC). Total number of ventricular premature beats (VPB) that occurred in the control hearts (518+/-71) was significantly (P<0.05) reduced by I-PC (195+/-40), NAC (290+/-56) and DZX (168+/-22). I-PC and NAC suppressed an increase in CD and TBARS caused by ischemia indicating lower production of ROS. On the other hand, I-PC and DZX themselves moderately enhanced ROS generation, prior to TI. Bracketing of I-PC with 5-HD suppressed both, ROS production during PC and its cardioprotective effect. In conclusion, potential mechanisms of protection conferred by mito K(ATP) opening in the rat heart might involve a temporal increase in ROS production in the preconditioning phase triggering changes in the pro/antioxidant balance in the myocardium and attenuating ROS production during subsequent prolonged ischemia.  相似文献   

13.
Diallyl trisulfide (DATS), a polysulfide constituent found in garlic oil, is capable of the release of hydrogen sulfide (H(2)S). H(2)S is a known cardioprotective agent that protects the heart via antioxidant, antiapoptotic, anti-inflammatory, and mitochondrial actions. Here, we investigated DATS as a stable donor of H(2)S during myocardial ischemia-reperfusion (MI/R) injury in vivo. We investigated endogenous H(2)S levels, infarct size, postischemic left ventricular function, mitochondrial respiration and coupling, endothelial nitric oxide (NO) synthase (eNOS) activation, and nuclear E2-related factor (Nrf2) translocation after DATS treatment. Mice were anesthetized and subjected to a surgical model of MI/R injury with and without DATS treatment (200 μg/kg). Both circulating and myocardial H(2)S levels were determined using chemiluminescent gas chromatography. Infarct size was measured after 45 min of ischemia and 24 h of reperfusion. Troponin I release was measured at 2, 4, and 24 h after reperfusion. Cardiac function was measured at baseline and 72 h after reperfusion by echocardiography. Cardiac mitochondria were isolated after MI/R, and mitochondrial respiration was investigated. NO metabolites, eNOS phosphorylation, and Nrf2 translocation were determined 30 min and 2 h after DATS administration. Myocardial H(2)S levels markedly decreased after I/R injury but were rescued by DATS treatment (P < 0.05). DATS administration significantly reduced infarct size per area at risk and per left ventricular area compared with control (P < 0.001) as well as circulating troponin I levels at 4 and 24 h (P < 0.05). Myocardial contractile function was significantly better in DATS-treated hearts compared with vehicle treatment (P < 0.05) 72 h after reperfusion. DATS reduced mitochondrial respiration in a concentration-dependent manner and significantly improved mitochondrial coupling after reperfusion (P < 0.01). DATS activated eNOS (P < 0.05) and increased NO metabolites (P < 0.05). DATS did not appear to significantly induce the Nrf2 pathway. Taken together, these data suggest that DATS is a donor of H(2)S that can be used as a cardioprotective agent to treat MI/R injury.  相似文献   

14.
Diabetes, one of the major risk factors of metabolic syndrome culminates in the development of Ischemic Heart Disease (IHD). Refined diets that lack micronutrients, mainly trivalent chromium (Cr3+) have been identified as the contributor in the rising incidence of diabetes. We investigated the effect of niacin-bound chromium (NBC) during ischemia/reperfusion (IR) injury in streptozotocin induced diabetic rats. Rats were randomized into: Control (Con); Diabetic (Dia) and Diabetic rats fed with NBC (Dia + NBC). After 30 days of treatment, the isolated hearts were subjected to 30 min of global ischemia followed by 2 h of reperfusion. NBC treatment demonstrated significant increase in left ventricular functions and significant reduction in infarct size and cardiomyocyte apoptosis in Dia + NBC compared with Dia. Increased Glut-4 translocation to the lipid raft fractions was also observed in Dia + NBC compared to Dia. Reduced Cav-1 and increased Cav-3 expression along with phosphorylation of Akt, eNOS and AMPK might have resulted in increased Glut-4 translocation in Dia + NBC. Our results indicate that the cardioprotective effect of NBC is mediated by increased activation of AMPK, Akt and eNOS resulting in increased translocation of Glut-4 to the caveolar raft fractions thereby alleviating the effects of IR injury in the diabetic myocardium.  相似文献   

15.
Tong G  Sun Z  Wei X  Gu C  Kaye AD  Wang Y  Li J  Zhang Q  Guo H  Yu S  Yi D  Pei J 《Life sciences》2011,88(1-2):31-38
AimsEvidence has indicated U50,488H, a selective κ-opioid receptor (κ-OR) agonist, administered before ischemia attenuates apoptosis and infarction during ischemia and reperfusion (I/R). However, it remains unclear whether U50,488H postconditioning reduces apoptosis during I/R. This study was designed, therefore, to test the hypothesis that U50,488H administered at the onset of reperfusion inhibits cardiomyocyte apoptosis and to investigate the underlying mechanisms.Main methodsMale Sprague–Dawley rats were subjected to myocardial ischemia and reperfusion(MI/R) and were randomized to receive either vehicle, U50,488H, U50,488H plus Nor-BNI, a selective κ-OR antagonist, U50,488H plus wortmannin, a specific inhibitor of phosphoinositide 3′-kinase (PI3K), or U50,488H plus L-NAME, a nitric oxide synthase inhibitor (NOS inhibitor), immediately prior to reperfusion. In vitro study was performed on cultured neonatal cardiomyocytes subjected to simulated ischemia/reperfusion.Key findingsTreatment with U50,488H resulted in increases in Akt and endothelial nitric oxide synthase (eNOS) phosphorylation with secondary NO production both in vivo and in vitro and these effect were completely blocked by wortmannin and specific Akt inhibitor(AI). L-NAME treatment had no effect on Akt and eNOS phosphorylation; but, significantly reduced NO production. Moreover, treatment with U50,488H markedly reduced myocardial apoptotic death. Treatment with wortmannin and specific Akt inhibitor abolished the anti-apoptotic effect of U50,488H. L-NAME also significantly attenuated the anti-apoptotic effect of U50,488H.SignificanceThese results demonstrate that U50,488H administered immediately prior to reperfusion increases Akt phosphorylation through a PI3-kinase-dependent mechanism and reduces postischemic myocardial apoptosis. Phosphorylation of eNOS with secondary NO production contribute significantly to the anti-apoptotic effect of U50,488H postconditioning.  相似文献   

16.
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h ofreperfusion in wt mice while iNOS deficient mice exhibited substantial increases at I but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.  相似文献   

17.
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress.  相似文献   

18.
目的:探讨在体情况下,骨骼肌缺血后处理对兔缺血/再灌注心肌坏死和凋亡的影响。方法:新西兰大白兔36只,随机分成3组(每组随机选取6只进行梗死范围的测定,另外6只进行凋亡测定):①假手术组(Sham组);②缺血/再灌注组(I/R组);③远端后处理组(RPostC组)。在缺血前、后及再灌注60 min、120 min分别抽血测定肌酸激酶(CK),乳酸脱氢酶(LDH)的活性。采用伊文思兰(evans blue)和三苯基氯化四氮唑(TTC)染色方法确定心肌缺血区范围以及心肌坏死区范围。用Tunel法检测兔心肌缺血区细胞凋亡情况,免疫组织化学方法检测心肌缺血区蛋白caspase-3、Bcl-2及Bax的表达。结果:RPostC组心肌坏死程度、再灌注末CK活性较I/R组明显减低。RPostC组缺血区心肌Tunel阳性指数显著低于I/R组(21.79%±1.07%vs35.81%±1.10%,P<0.05)。而RPostC组缺血区心肌细胞caspase-3阳性指数显著低于I/R组(25.03%±1.16%vs39%±2.43%,P<0.05)。与Sham组比较,I/R组及RPostC组Bax蛋白表达指数、Bcl-2蛋白表达指数均升高;但RPostC组的Bax/Bcl-2比值降低,而I/R组的Bax/Bcl-2比值升高。与I/R组相比较,RPostC组Bax蛋白表达指数及Bax/Bcl-2比值显著降低,Bcl-2表达指数显著升高,差异均有统计学意义。结论:远端后处理能够明显的减少缺血/再灌注心肌细胞的坏死和凋亡,其减轻心肌细胞凋亡的机制可能与抑制促凋亡基因caspase-3的活化及Bcl-2表达的上调有关。  相似文献   

19.
Thisstudy examined mRNA and protein expressions of neuronal (nNOS),inducible (iNOS), and endothelial nitric oxide synthases (eNOS) inperipheral nerve after ischemia-reperfusion (I/R). Sixty-six rats were divided into the ischemia only and I/R groups. Onesciatic nerve of each animal was used as the experimental side and the opposite untreated nerve as the control. mRNA levels in the nerve werequantitatively measured by competitive PCR, and protein was determinedby Western blotting and immunohistochemical staining. The resultsshowed that, after ischemia (2 h), both nNOS and eNOS proteinexpressions decreased. After I/R (2 h of ischemia followed by3 h of reperfusion), expression of both nNOS and eNOS mRNA andprotein decreased further. In contrast, iNOS mRNA significantly increased after ischemia and was further upregulated (14-fold) after I/R, while iNOS protein was not detected. The results reveal thedynamic expression of individual NOS isoforms during the course of I/Rinjury. An understanding of this modulation on a cellular and molecularlevel may lead to understanding the mechanisms of I/R injury and tomethods of ameliorating peripheral nerve injury.

  相似文献   

20.
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1?h, followed by 6?h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30?min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号