首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Zucker fatty rats, a strain characterized by diabetes and hyperlipidemia, we investigated the diabetes- and hyperlipidemia-related impairment of bone marrow mononuclear cells (BMCs) for inducing therapeutic angiogenesis. BMCs from Zucker fatty and normal Zucker lean rats were collected and cultured. Although the characterization and cell survival of BMCs did not differ, the VEGF production, endothelial differentiation, and endothelial cell colony-forming potential of BMCs from Zucker fatty rats were significantly lower than those of BMCs from lean rats. By using an ischemic hindlimb model, we found that the native recovery of induced limb ischemia in the Zucker fatty rats was also significantly worse than that in the lean rats. Furthermore, the expression of 5-hydroxytryptamine (5-HT(2A)) receptors was obviously higher in the Zucker fatty rats than that in the lean rats and was enhanced after limb ischemia. Although the therapeutic potency was lower than with the implantation of BMCs from normal lean rats, the implantation of BMCs from fatty rats could also induce angiogenesis and increase blood flow significantly in the ischemic hindlimbs of Zucker fatty rats. Furthermore, the blood flow in the ischemic hindlimbs was increased by the administration of sarpogrelate, a selective 5-HT(2A)-receptor antagonist. Our results clearly show diabetes- and hyperlipidemia-related dysfunction and impaired potency for inducing angiogenesis of BMCs. However, the implantation of autologous BMCs into ischemic limbs of diabetic and hyperlipidemic rats has induced therapeutic angiogenesis effectively, and blood flow would be enhanced by the administration of a 5-HT(2A)-receptor antagonist.  相似文献   

2.
Cell-based angiogenesis is a promising treatment for ischemic diseases; however, the survival of implanted cells is impaired by oxidative stress in the ischemic microenvironment. We tested the hypothesis that hypoxic preconditioning of implanted cells enhances their resistance against oxidative stress, increasing cell survival and angiogenic potency after implantation into ischemic tissue. Mouse peripheral blood mononuclear cells (PBMNCs) were collected and subjected to hypoxic preconditioning by culture for 24 h in 2% O(2) at 33 degrees C. Hypoxic preconditioning of PBMNCs increased the expression of various genes related to antioxidant and survival signals remarkably. Compared with cells cultured under normoxia, the hypoxia-preconditioned PBMNCs showed significantly lower reactive oxygen species (ROS) accumulation and higher cell survival under oxidative stress induced by LY-83583 (a superoxide generator). Three days after intramuscular implantation into the ischemic hindlimbs of mice, survival of the hypoxia-preconditioned PBMNCs was high, whereas that of the normoxia-cultured PBMNCs was relatively low. Furthermore, 28 days after treatment microvessel density and blood flow in the ischemic hindlimbs were significantly better in the mice implanted with hypoxia-preconditioned PBMNCs than in those implanted with normoxia-cultured PBMNCs. Hypoxic preconditioning increased the survival and angiogenic potency of PBMNCs, through oxidative stress resistance mechanisms.  相似文献   

3.
Cell‐based angiogenesis is a promising method for the treatment of ischemic diseases, but the poor retention of implanted cells in targeted tissues is a major drawback. We tested whether hypoxic preconditioning increased retention and angiogenic potency of implanted cells in ischemic tissue. Hypoxic preconditioning of mouse peripheral blood mononuclear cells (PBMNCs) was done with 24 h of culture under 2% O2. Normoxia‐cultured PBMNCs were used as a control. Hypoxic preconditioning increased the adhesion capacity of the PBMNCs. Moreover, the expression of integrin αM and CXCR4 was significantly higher in the hypoxia‐preconditioned PBMNCs than in the normoxia‐cultured PBMNCs. Interestingly, the expression of intercellular adhesion molecule‐1 (ICAM‐1), a ligand of integrin αM, and stromal cell‐derived factor‐1 (SDF‐1), a chemokine for CXCR4, were remarkably increased in the ischemic hindlimbs. The retention of the hypoxia‐preconditioned PBMNCs was significantly higher than that of the normoxia‐cultured PBMNCs, 3 days after their intramuscular implantation into ischemic hindlimbs. We also noted better blood flow in the ischemic hindlimbs implanted with the hypoxia‐preconditioned PBMNCs than in those implanted with the normoxia‐cultured PBMNCs, 14 days after treatment. Furthermore, antibody neutralization of integrin αM and CXCR4 abolished completely the increased cell retention and angiogenic potency of the hypoxia‐preconditioned PBMNCs after implantation into the ischemic hindlimbs. These results indicate that hypoxic preconditioning of implanted cells is a feasible method of enhancing therapeutic angiogenesis by increasing their retention. J. Cell. Physiol. 220: 508–514, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Therapeutic angiogenesis can be induced by the implantation of bone marrow mononuclear cells. We investigated the roles of mature mononuclear cell and stem cell fractions in bone marrow in this treatment. Although CD34 is the most popular marker for stem cell selection for inducing therapeutic angiogenesis, we separated CD117-positive cells (CD117+) from mature bone marrow mononuclear cells [CD117-negative cells (CD117-)] from mice using the antibody to the stem cell receptor, because some of the bone marrow stem cells that express CD117+ and CD34- might generate angiogenic cytokines and differentiate into endothelial cells. The angiogenic potency of CD117+ and CD117- cells was investigated in vitro and in vivo. Significantly higher levels of VEGF were secreted from the CD117+ cells than from the CD117- cells (P < 0.001). Most of the CD117- cells died, but the CD117+ cells grew well and differentiated into endothelial cells within 14 days of culture. The CD117+ cells survived and were incorporated in microvessels within 14 days of being implanted into the ischemic hindlimbs of mice, but the CD117- cells did not. The microvessel density and blood perfusion of the ischemic hindlimbs were significantly higher in the CD117+ cell-implanted mice than in the CD117- cell-implanted mice (P < 0.01). The microvessel density in ischemic hindlimbs was also significantly higher in the CD117+ cell-implanted mice than in the total bone marrow cell-implanted mice (P < 0.05). Thus CD117+ stem cells play a key role in the therapeutic angiogenesis induced by bone marrow cell implantation.  相似文献   

5.
The angiogenic effect induced by autologous bone marrow cell implantation (BMCI) was examined in the ischemic hindlimbs of diabetic and nondiabetic rats. Diabetes mellitus was induced by the systemic administration of streptozotocin. We investigated the production of angiogenic factors and endothelial differentiation from bone marrow cells and the native recovery of blood flow in the ischemic hindlimbs. To observe the angiogenic effect induced by BMCI treatment, 6 x 10(7) bone marrow cells were injected intramuscularly at six points into the ischemic limbs, and regional perfusion recovery was evaluated with colored microspheres 2 wk later. No difference was found between diabetic and nondiabetic rats in the release of angiogenic factors or endothelial differentiation from bone marrow cells in vitro. The levels of nitric oxide in plasma were significantly lower, and native perfusion recovery in the ischemic hindlimbs was significantly slower in the diabetic rats than in the nondiabetic rats. However, although perfusion recovery was achieved in the ischemic hindlimbs, there was no significant increase in systemic VEGF after BMCI treatment in either the diabetic or nondiabetic rats. Therefore, therapeutic angiogenesis induced by BMCI could be a safe and effective treatment for ischemic limb disease in diabetic patients.  相似文献   

6.
Therapeutic angiogenesis can be induced by local implantation of bone marrow cells. We tried to enhance the angiogenic potential of this treatment by ex vivo hypoxia stimulation of bone marrow cells before implantation. Bone marrow cells were collected and cultured at 33 degrees C under 2% O(2)-5% CO(2)-90% N(2) (hypoxia) or 95% air-5% CO(2) (normoxia). Cells were also injected into the ischemic hindlimb of rats after 24 h of culture. Hypoxia culture increased the mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial (VE)-cadherin, and fetal liver kinase-1 (Flk-1) from 2.5- to fivefold in bone marrow cells. The levels of VEGF protein in the ischemic hindlimb were significantly higher 1 and 3 days after implantation with hypoxia-cultured cells than with normoxia-cultured or noncultured cells. The microvessel density and blood flow rate in the ischemic hindlimbs were also significantly (P < 0.001) higher 2 wk after implantation with hypoxia-cultured cells (89.7 +/- 5.5%) than with normoxia-cultured cells (67.0 +/- 9.6%) or noncultured cells (70.4 +/- 7.7%). Ex vivo hypoxia stimulation increased the VEGF mRNA expression and endothelial differentiation of bone marrow cells, which together contributed to improved therapeutic angiogenesis in the ischemic hindlimb after implantation.  相似文献   

7.
LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.  相似文献   

8.
Sumi M  Sata M  Toya N  Yanaga K  Ohki T  Nagai R 《Life sciences》2007,80(6):559-565
Therapeutic angiogenesis has emerged as a promising therapy to treat patients with ischemic diseases. Transplantation of bone marrow cells (BMCs) is reported to augment collateral development in ischemic organs either by differentiating into vascular cells or by secreting angiogenic cytokines. Recent evidence suggests that adipose tissues secrete a number of humoral factors and contain pluripotent stem cells. Here, we evaluated the therapeutic potential of adipose tissue-derived cells to promote angiogenesis in a mouse model of hind limb ischemia. Stromal vascular fraction cells (SVFs) were isolated from inguinal adipose tissue. Endothelial-like cells or smooth muscle-like cells could be obtained from the culture of SVFs in the presence of growth factors. Freshly isolated BMCs, SVFs, or mature adipocytes were transplanted into the ischemic hind limb of mice. SVFs significantly augmented collateral development as determined by the restoration of blood perfusion and capillary density of the ischemic muscle. Angiogenic effects of SVFs were as potent as those of BMCs. Mature adipocytes showed no proangiogenic effects. The ischemic muscle contained endothelial cells or smooth muscle cells that derived from the transplanted SVFs and BMCs. These results suggest that SVFs might be used to promote angiogenesis in ischemic tissues.  相似文献   

9.
Nitric oxide (NO) and reactive oxygen species (ROS) are emerging as important regulators of angiogenesis. NO enhances VEGF synthesis in several cell types and is required for execution of VEGF angiogenic effect in endothelial cells. Similarly, hydrogen peroxide induces VEGF synthesis and recent studies indicate the involvement of ROS in signaling downstream of VEGF stimulation. VEGF synthesis can not only be enhanced by gene transfer of VEGF but also by overexpression of NO synthase genes. Here, we examined the possibility of augmentation of VEGF production by gene transfer of copper/zinc superoxide dismutase (CuZnSOD, SOD1). Overexpression of human SOD1 in mouse NIH 3T3 fibroblasts increased SOD activity, enhanced intracellular generation of H2O2 and significantly stimulated VEGF production as determined by increase in VEGF promoter activity, VEGF mRNA expression and VEGF protein synthesis. The stimulatory effect on VEGF synthesis induced by SOD1 gene transfer was reverted by overexpression of human catalase. The effect of H2O2 produced by engineered cells is mediated by activation of hypoxia-inducible factor response element (HRE) as well as Sp1 recognition site of VEGF promoter. This data suggest the feasibility of stimulation of angiogenesis by overexpression of SOD1.  相似文献   

10.
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.  相似文献   

11.
Endothelial cell (EC) matrix interaction is critical in angiogenesis. Although matrix components can regulate the process of angiogenesis by acting as a reservoir of various cytokines, it is not clear if extracellular matrix (ECM) can modulate the production and activity of angiogenic cytokines. Investigations were therefore carried out to study the influence of the basement membrane (BM) protein, laminin (Ln) on the activity of vascular endothelial growth factor (VEGF), the major angiogenic cytokine, using isolated human umbilical vein ECs (HUVECs) in culture. Analysis of the biochemical markers of angiogenesis confirmed proangiogenic effect of Ln. The levels of VEGF protein and mRNA were not different in cells maintained on Ln, collagen I or polylysine substrata. Chorioallantoic membrane assay using VEGF isolated from cell extracts however revealed that Ln increased its angiogenic potency. Immunoblotting and HPLC analysis showed considerable reduction in poly adenosyl ribosylation of VEGF associated with a significant decrease in the levels of NAD+, in cells maintained on Ln substrata. Further, a shift in the isoenzymic pattern of LDH towards the B rich forms and an upregulation of LDH B gene were observed in cells maintained on Ln. Ln modulates expression of LDH gene through alpha(6)beta(4) integrin mediated downstream signaling involving p38 mitogen activated protein kinases (MAPK) pathway. It thus appears that Ln can affect aerobic metabolism of ECs by modulating the expression of LDH isoenzymes resulting in a decrease in the level of NAD+ that can cause a reduction in the poly adenosyl ribosylation of VEGF altering its angiogenic potency.  相似文献   

12.
13.
14.
Vascularization, under physiological or pathophysiological conditions, typically takes place by one or more of the following processes: angiogenesis, vasculogenesis, arteriogenesis, and lymphangiogenesis. Although all of these mechanisms of vascularization have sufficient contrasting features to warrant consideration under separate cover, one common feature shared by all is their sensitivity to the VEGF signaling pathway. Conditions such as wound healing and physical exercise result in increased production of reactive oxygen species such as H(2)O(2), and both are associated with increased tissue vascularization. Understanding these two scenarios of adult tissue vascularization in tandem offers the potential to unlock the significance of redox regulation of the VEGF signaling pathway. Does H(2)O(2) support tissue vascularization? H(2)O(2) induces the expression of the most angiogenic form of VEGF, VEGF-A, by a HIF-independent and Sp1-dependent mechanism. Ligation of VEGF-A to VEGFR2 results in signal transduction leading to tissue vascularization. Such ligation generates H(2)O(2) via an NADPH oxidase-dependent mechanism. Disruption of VEGF-VEGFR2 ligation-dependent H(2)O(2) production or decomposition of such H(2)O(2) stalls VEGFR2 signaling. Numerous antioxidants exhibit antiangiogenic properties. Current evidence lends firm credence to the hypothesis that low-level endogenous H(2)O(2) supports vascular growth.  相似文献   

15.
Vascular endothelial growth factor (VEGF), a potent angiogenic mitogen, plays a crucial role in angiogenesis under various pathophysiological conditions. We have recently demonstrated that VEGF(165), one of the VEGF isoforms, binds connective tissue growth factor (CTGF) and that its angiogenic activity is inhibited in the VEGF(165).CTGF complex form (Inoki, I., Shiomi, T., Hashimoto, G., Enomoto, H., Nakamura, H., Makino, K., Ikeda, E., Takata, S., Kobayashi, K. and Okada, Y. (2002) FASEB J. 16, 219-221). In the present study, we further examined the susceptibility of the VEGF(165).CTGF complex to matrix metalloproteinases (MMP-1, -2, -3, -7, -9, and -13), ADAMTS4 (aggrecanase-1), and serine proteinases, and evaluated the recovery of the angiogenic activity of VEGF(165) after the treatment. Among the MMPs, MMP-1, -3, -7, and -13 processed CTGF of the complex into the major NH(2)- and COOH-terminal fragments, whereas VEGF(165) was completely resistant to the MMPs. On the other hand, elastase and plasmin cleaved both CTGF and VEGF(165) of the complex, but they were completely resistant to ADAMTS4. By digestion of the immobilized VEGF(165).CTGF complex with MMP-3 or MMP-7, both NH(2)- and COOH-terminal fragments of CTGF were dissociated and released from the complex into the liquid phase. The in vitro angiogenic activity of VEGF(165) blocked in the VEGF(165).CTGF complex was reactivated to original levels after CTGF digestion of the complex with MMP-1, -3, and -13. Recovery of angiogenic activity was further confirmed by in vivo angiogenesis assay using a Matrigel injection model in mice. These results demonstrate for the first time that CTGF is a substrate of MMPs and that the angiogenic activity of VEGF(165) suppressed by the complex formation with CTGF is recovered through the selective degradation of CTGF by MMPs. MMPs may play a novel role through CTGF degradation in VEGF-induced angiogenesis during embryonic development, tissue maintenance, and/or pathological processes of various diseases.  相似文献   

16.
Background aimsWe wanted to determine whether zinc supplementation can inhibit bone marrow-derived mesenchymal stromal cell (MSC) apoptosis and enhance their tissue regenerative potential a in mouse ischemic hindlimb model.MethodsRat bone marrow cells were cultured and the resulting MSC were passaged for 3–7 generations. The proliferation and apoptosis of MSC was examined by 3-[4,5-dimethyl-2-thiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis. The activation of protein kinases B (Akt) was determined by Western blots. Vascular endothelial growth factor (VEGF) levels were examined by enzyme-linked immunosorbent assay. The mouse hindlimb ischemic model was established by ligating the right femoral artery. Mice received MSC, zinc-treated MSC or vehicle. The blood flow was assessed by laser Doppler imaging. The survival rate of donor cells was quantified by real-time polymerase chain reaction for the sex-determining region of the Y-chromosome (Sry). Angiogenesis was assessed by histochemical staining and immunofluoresence staining.ResultsSupplementation with physiologic amounts of zinc caused a marked attenuation of cell apoptosis, enhanced cell viabilities, increased VEGF release and up-regulated Akt activation. Zinc-treated MSC delivered into ischemic hindlimbs resulted in significant improvements in limb blood perfusion by increased implanted MSC survival and stimulated angiogenesis.ConclusionsThis study demonstrates the potential of zinc supplement to enhance survival of engrafted MSC and ameliorate their tissue regenerative potential in a mouse ischemic hindlimb model.  相似文献   

17.
Human leptin induces angiogenesis in vivo   总被引:1,自引:0,他引:1  
Leptin is an adipocyte-produced peptide, which plays a crucial role in the regulation of body weight. There is also evidence that leptin stimulates endothelial cell proliferation and the formation of capillary-like tubes in vitro. The disc angiogenesis system was used to measure the angiogenic effect of leptin in vivo. Discs containing 25, 50, 100 and 250 ng/ml of leptin were implanted subcutaneously in Wistar rats, removed after a growth period of 7 and 14 days, and compared with spontaneous growth controls and with positive controls containing equivalent doses of vascular endothelial growth factor (VEGF). Discs were examined morphologically for stroma and vessel development and by immunohistochemistry for quantitative evaluation of angiogenesis. The specificity of the angiogenic effect of leptin was tested by blocking leptin with a polyclonal anti-leptin antibody. Leptin induced a significant level of angiogenesis in a dose-dependent manner both at 7 and 14 days, with a peak at the dose of 100 ng/ml. The angiogenic activity of leptin was completely abolished by the anti-leptin neutralizing antibody. VEGF also induced significant dose-dependent angiogenesis at the same time points with a peak observed at a concentration of 100 ng/ml. The angiogenic response to leptin was significantly higher at 7 days compared with VEGF but not at the 14-day time point. In conclusion, leptin has a specific angiogenic effect in vivo, which is dose- and time-dependent in a concentration range of 25–250 ng/ml. This effect is equivalent to the angiogenic effect of VEGF but is evident earlier compared with VEGF.  相似文献   

18.
Vascular endothelial growth factor (VEGF) mediates angiogenic signaling by activating tyrosine kinase receptors. Endothelial cells treated with VEGF are known to increase reactive oxygen species (ROS) production and activate the MAPK pathway. To identify the target proteins of the VEGF receptor, we treated human umbilical vein endothelial cells (HUVECs) with VEGF or H2O2, and identified and semiquantified tyrosine-phosphorylated proteins, combining 2D-gel electrophoresis, Western analysis using antibody against phospho-tyrosine, and mass spectrometry. We detected 95 proteins that were differentially phosphorylated; some were specifically phosphorylated by VEGF but not by H2O2. 2D-gel electrophoresis revealed that heterogeneous populations of the same protein responded differently to H2O2 and VEGF. Bioinformatic studies examining the nature of the differential phosphorylation in various subpopulations of proteins should provide new insights into VEGF- and H2O2-induced signaling pathways.  相似文献   

19.
We hypothesized that pretreatment of an infarcted heart by mechanical transmyocardial revascularization (TMR) before transplantation of bone marrow cells (BMCs) or BMC-expressing angiogenic growth factors would increase transplanted BMC survival and enhance myocardial repair. Female Lewis rats underwent coronary ligation 3 wk before creation of 10 needle TMR channels (3 groups) or no TMR (3 groups), followed by transplantation of 3 x 10(6) male donor BMCs, BMC transfected with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1) (BMC + VBI), or medium alone. At 1, 3, and 7 days, we evaluated transplanted cell survival, vascular densities, and left ventricular (LV) function (N = 4 per group x 6 groups x 3 time points). At 3 days, vascular densities in the scar were increased by TMR + BMC + VBI and by BMC + VBI (P < 0.05), and at 7 days, vascular densities were greatest in rats receiving TMR + BMC + VBI (P < 0.05). Transplanted cell survival at 3 and 7 days was increased by TMR and by BMC + VBI. Combined therapy with TMR + BMC + VBI resulted in the greatest cell survival at 3 days (P < 0.05) versus BMC. After 7 days, LV ejection fraction (LVEF) was lowest in rats receiving neither BMC nor TMR and greatest in rats receiving TMR + BMC + VBI (P = 0.004). We concluded that mechanical pretreatment of infarcted myocardium by TMR enhances the effect of subsequent cell-based gene therapy on transplanted cell survival, angiogenesis, and LV function. Scar pretreatment with TMR combined with cell-based multigene therapy may maximize myocardial repair.  相似文献   

20.
Angiogenesis plays an important role in tissue remodeling and repair during the late phase of inflammation. In the present study, we show that human dendritic cells (DC) that matured in the presence of anti-inflammatory molecules such as calcitriol, PGE2, or IL-10 (alternatively activated DC) selectively secrete the potent angiogenic cytokine vascular endothelial growth factor (VEGF) isoforms VEGF165 and VEGF121. No VEGF production was observed in immature or classically activated DC. Also, the capacity to produce VEGF was restricted to the myeloid DC subset. When implanted in the chick embryo chorioallantoic membrane, alternatively activated DC elicit a marked angiogenic response, which is inhibited by neutralizing anti-VEGF Abs and by the VEGFR-2 inhibitor SU5416. Therefore, alternatively activated DC may contribute to the resolution of the inflammatory reaction by promoting VEGF-induced angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号