首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ligation of FcgammaR concurrent with LPS stimulation of murine macrophages results in decreased IL-12 and increased IL-10 production. Because PI3K deficiency has been associated with increased IL-12, we hypothesized that PI3K was central to the anti-inflammatory effect of FcgammaR ligation on TLR-induced IL-12. FcgammaR ligation of macrophages increased pAKT, a correlate of PI3K activity, above levels induced by TLR4 or TLR2 agonists. This increase was blocked by PI3K inhibitors, wortmannin or LY294002, as was the effect of FcgammaR ligation on TLR-induced IL-12 and IL-10. LPS-induced binding of NF-kappaB to the IL-12 p40 promoter NF-kappaB-binding site was not affected by FcgammaR ligation at 1 h; however, by 4 h, NF-kappaB binding was markedly inhibited, confirmed in situ by chromatin immunoprecipitation analysis. This effect was wortmannin sensitive. Although TLR-induced IkappaBalpha degradation was not affected by FcgammaR ligation, IkappaBalpha accumulated in the nuclei of cells treated with LPS and FcgammaR ligation for 4 h, and was blocked by PI3K inhibitors. LPS-induced IFN regulatory factor-8/IFN consensus sequence-binding protein mRNA, and an IFN regulatory factor-8-dependent gene, Nos2, were inhibited by concurrent FcgammaR ligation, and this was also reversed by wortmannin. Thus, FcgammaR ligation modulates LPS-induced IL-12 via multiple PI3K-sensitive pathways that affect production, accumulation, and binding of key DNA-binding proteins required for IL-12 induction.  相似文献   

3.
Thyroid hormones affect cardiac growth and phenotype; however, the mechanisms by which the hormones induce cardiomyocyte hypertrophy remain uncharacterized. Tri-iodo-L-thyronine (T3) treatment of cultured cardiomyocytes for 24 h resulted in a 41 +/- 5% (p < 0.001) increase in [(3)H]leucine incorporation into total cellular protein. This response was abrogated by the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. Co-immunoprecipitation studies showed a direct interaction of cytosol-localized thyroid hormone receptor TRalpha1 and the p85alpha subunit of PI3K. T3 treatment rapidly increased PI3K activity by 52 +/- 3% (p < 0.005), which resulted in increased phosphorylation of downstream kinases Akt and mammalian target of rapamycin (mTOR). This effect was abrogated by pretreatment with wortmannin or LY294002. Phosphorylation of p70(S6K), a known target of mTOR, occurred rapidly following T3 treatment and was inhibited by rapamycin and wortmannin. In contrast, phosphorylation of the p85 variant of S6K in response to T3 was not blocked by LY294002, wortmannin, or rapamycin, thus supporting a T3-activated pathway independent of PI3K and mTOR. 40 S ribosomal protein S6, a target of p70(S6K), and 4E-BP1, a target of mTOR, were both phosphorylated within 15-25 min of T3 treatment and could be inhibited by wortmannin and rapamycin. Thus, rapid T3-mediated activation of PI3K by cytosolic TRalpha1 and subsequent activation of the Akt-mTOR-S6K signaling pathway may underlie one of the mechanisms by which thyroid hormone regulates physiological cardiac growth.  相似文献   

4.
5.
Activation of phosphatidylinositol 3-kinase (PI3K) and activation of the 70/85-kDa S6 protein kinases (alpha II and alpha I isoforms, referred to collectively as pp70S6k) have been independently linked to the regulation of cell proliferation. We demonstrate that these kinases lie on the same signalling pathway and that PI3K mediates the activation of pp70 by the cytokine interleukin-2 (IL-2). We also show that the activation of pp70S6k can be blocked at different points along the signalling pathway by using specific inhibitors of T-cell proliferation. Inhibition of PI3K activity with structurally unrelated but highly specific PI3K inhibitors (wortmannin or LY294002) results in inhibition of IL-2-dependent but not phorbol ester (conventional protein kinase C [cPKC])-dependent pp70S6k activation. The T-cell immunosuppressant rapamycin potently antagonizes IL-2-(PI3K)- and phorbol ester (cPKC)-mediated activation of pp70S6k. Thus, wortmannin and rapamycin antagonize IL-2-mediated activation of pp70S6k at distinct points along the PI3K-regulated signalling pathway, or rapamycin antagonizes another pathway required for pp70S6k activity. Agents that raise the concentration of intracellular cyclic AMP (cAMP) and activate cAMP-dependent protein kinase (PKA) also inhibit IL-2-dependent activation of pp70S6k. In this case, inhibition appears to occur at least two points in this signalling path. Like rapamycin, PKA appears to act downstream of cPKC-mediated pp70S6k activation, and like wortmannin, PKA antagonizes IL-2-dependent activation of PI3K. The results with rapamycin and wortmannin are of added interest since the yeast and mammalian rapamycin targets resemble PI3K in the catalytic domain.  相似文献   

6.
Phosphatidylinositol 3'-kinase (PI 3-kinase) catalyzes the formation of 3' phosphoinositides and has been implicated in an intracellular signaling pathway that inhibits apoptosis in both neuronal and hemopoietic cells. Here, we investigated two potential downstream mediators of PI 3-kinase, the serine/threonine p70 S6-kinase (S6-kinase) and the antiapoptotic protein B cell lymphoma-2 (Bcl-2). Stimulation of factor-dependent cell progenitor (FDCP) cells with either IL-4 or insulin-like growth factor (IGF)-I induced a 10-fold increase in the activity of both PI 3-kinase and S6-kinase. Rapamycin blocked 90% of the S6-kinase activity but did not affect PI 3-kinase, whereas wortmannin and LY294002 inhibited the activity of both S6-kinase and PI 3-kinase. However, wortmannin and LY294002, but not rapamycin, blocked the ability of IL-4 and IGF-I to promote cell survival. We next established that IL-3, IL-4, and IGF-I increase expression of Bcl-2 by >3-fold. Pretreatment with inhibitors of PI 3-kinase, but not rapamycin, abrogated expression of Bcl-2 caused by IL-4 and IGF-I, but not by IL-3. None of the cytokines affected expression of the proapoptotic protein Bax, suggesting that all three cytokines were specific for Bcl-2. These data establish that inhibition of PI 3-kinase, but not S6-kinase, blocks the ability of IL-4 and IGF-I to increase expression of Bcl-2 and protect promyeloid cells from apoptosis. The requirement for PI 3-kinase to maintain Bcl-2 expression depends upon the ligand that activates the cell survival pathway.  相似文献   

7.
Overactivation of microglial cells may cause severe brain tissue damage in various neurodegenerative diseases. Therefore, the overactivation of microglia should be repressed by any means. The present study investigated the potential mechanism and signaling pathway for the repressive effect of TGF-beta1, a major anti-inflammatory cytokine, on overactivation and resultant death of microglial cells. A bacterial endotoxin LPS stimulated expression of inducible NO synthase (iNOS) and caused death in cultured microglial cells. TGF-beta1 markedly blocked these LPS effects. However, the LPS-evoked death of microglial cells was not solely attributed to excess production of NO. Because phosphatidylinositol 3-kinase (PI3K) was previously shown to play a crucial role in iNOS expression and cell survival signals, we further studied whether PI3K signaling was associated with the suppressive effect of TGF-beta1. Like TGF-beta1, the PI3K inhibitor LY294002 blocked iNOS expression and death in cultured microglial cells. Both TGF-beta1 and LY294002 decreased the activation of caspases 3 and 11 and the mRNA expression of various kinds of inflammatory molecules caused by LPS. TGF-beta1 was further found to decrease LPS-induced activation of PI3K and Akt. TGF-beta1 and LY294002 suppressed LPS-induced p38 mitogen-activated kinase and c-Jun N-terminal kinase activity. In contrast, TGF-beta1 and LY294002 enhanced LPS-induced NF-kappaB activity. Our data indicate that TGF-beta1 protect normal or damaged brain tissue by repressing overactivation of microglial cells via inhibition of PI3K and its downstream signaling molecules.  相似文献   

8.
9.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

10.
Sphingosine 1-phosphate (S1P) has been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. S1P increases the expression of several proteins including COX-2 in vascular smooth muscle cells (VSMCs) and contributes to arteriosclerosis. However, the mechanisms regulating COX-2 expression by S1P in VSMCs remain unclear. Western blotting and RT-PCR analyses showed that S1P induced the expression of COX-2 mRNA and protein in a time- and concentration-dependent manner, which was attenuated by inhibitors of MEK1/2 (U0126) and PI3K (wortmannin), and transfection with dominant negative mutants of p42/p44 mitogen-activated protein kinases (ERK2) or Akt. These results suggested that both p42/p44 MAPK and PI3K/Akt pathways participated in COX-2 expression induced by S1P in VSMCs. In accordance with these findings, S1P stimulated phosphorylation of p42/p44 MAPK and Akt, which was attenuated by U0126, LY294002, or wortmannin, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by a selective NF-kappaB inhibitor helenalin. Consistently, S1P-stimulated translocation of NF-kappaB into the nucleus was revealed by immnofluorescence staining. Moreover, S1P-stimulated activation of NF-kappaB promoter activity was blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and helenalin, but not by U0126, suggesting that involvement of PI3K/Akt in the activation of NF-kappaB. COX-2 promoter assay showed that S1P induced COX-2 promoter activity mediated through p42/p44 MAPK, PI3K/Akt, and NF-kappaB. These results suggested that in VSMCs, activation of p42/p44 MAPK, Akt and NF-kappaB pathways was essential for S1P-induced COX-2 gene expression. Understanding the mechanisms involved in S1P-induced COX-2 expression on VSMCs may provide potential therapeutic targets in the treatment of arteriosclerosis.  相似文献   

11.
Although amino acids can function as signaling molecules in the regulation of many cellular processes, mechanisms surrounding L-threonine involvement in embryonic stem cell (ESC) functions have not been explored. Thus, we investigated the effect of L-threonine on regulation of mouse (m)ESC self-renewal and related signaling pathways. In L-threonine-depleted mESC culture media mRNA of self-renewal marker genes, [(3)H]thymidine incorporation, expression of c-Myc, Oct4, and cyclins protein was attenuated. In addition, resupplying L-threonine (500 μM) after depletion restores/maintains the mESC proliferation. Disruption of the lipid raft/caveolae microdomain through treatment with methyl-β-cyclodextrin or transfection with caveolin-1 specific small interfering RNA blocked L-threonine-induced proliferation of mESCs. Addition of L-threonine induced phosphorylation of Akt, ERK, p38, JNK/SAPK, and mTOR in a time-dependent manner. This activity was blocked by LY 294002 (PI3K inhibitor), wortmannin (PI3K inhibitor), or an Akt inhibitor. L-threonine-induced activation of mTOR, p70S6K, and 4E-BP1 as well as cyclins and Oct4 were blocked by PD 98059 (ERK inhibitor), SB 203580 (p38 inhibitor) or SP 600125 (JNK inhibitor). Furthermore, L-threonine induced phosphorylation of raptor and rictor binding to mTOR was completely inhibited by 24 h treatment with rapamycin (mTOR inhibitor); however, a 10 min treatment with rapamycin only partially inhibited rictor phosphorylation. L-threonine induced translocation of rictor from the membrane to the cytosol/nuclear, which blocked by pretreatment with rapamycin. In addition, rapamycin blocked L-threonine-induced increases in mRNA expressions of trophoectoderm and mesoderm marker genes and mESC proliferation. In conclusion, L-threonine stimulated ESC G(1)/S transition through lipid raft/caveolae-dependent PI3K/Akt, MAPKs, mTOR, p70S6K, and 4E-BP1 signaling pathways.  相似文献   

12.
In the medullary thick ascending limb, inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with nerve growth factor (NGF) induces actin cytoskeleton remodeling that secondarily inhibits apical NHE3 and transepithelial HCO(3)(-) absorption. The inhibition by NGF is mediated 50% through activation of extracellular signal-regulated kinase (ERK). Here we examined the signaling pathway responsible for the remainder of the NGF-induced inhibition. Inhibition of HCO(3)(-) absorption was reduced 45% by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 and 50% by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), a downstream effector of PI3K. The combination of a PI3K inhibitor plus rapamycin did not cause a further reduction in the inhibition by NGF. In contrast, the combination of a PI3K inhibitor plus the MEK/ERK inhibitor U0126 completely eliminated inhibition by NGF. Rapamycin decreased NGF-induced inhibition of basolateral NHE1 by 45%. NGF induced a 2-fold increase in phosphorylation of Akt, a PI3K target linked to mTOR activation, and a 2.2-fold increase in the activity of p70 S6 kinase, a downstream effector of mTOR. p70 S6 kinase activation was blocked by wortmannin and rapamycin, consistent with PI3K, mTOR, and p70 S6 kinase in a linear pathway. Rapamycin-sensitive inhibition of NHE1 by NGF was associated with an increased level of phosphorylated mTOR in the basolateral membrane domain. These findings indicate that NGF inhibits HCO(3)(-) absorption in the medullary thick ascending limb through the parallel activation of PI3K-mTOR and ERK signaling pathways, which converge to inhibit NHE1. The results identify a role for mTOR in the regulation of Na(+)/H(+) exchange activity and implicate NHE1 as a possible downstream effector contributing to mTOR's effects on cell growth, proliferation, survival, and tumorigenesis.  相似文献   

13.
14.
TGF-beta is implicated in the pathogenesis of fibrotic disorders. It has been shown that Smad3 promotes the human alpha2(I) collagen (COL1A2) gene expression by TGF-beta1 in human dermal fibroblasts. Here, we investigated the role of phosphatidylinositol 3-kinase (PI3K) in the COL1A2 gene expression in normal and scleroderma fibroblasts. In normal fibroblasts, the PI3K inhibitor, LY294002, significantly decreased the basal and the TGF-beta1-induced increased stability of COL1A2 mRNA. The TGF-beta1-induced COL1A2 promoter activity, but not the basal activity, was significantly attenuated by LY294002 or the dominant negative mutant of p85 subunit of PI3K, while the constitutive active mutant of p110 subunit of PI3K did not affect the basal or the TGF-beta1-induced COL1A2 promoter activity. LY294002 significantly decreased the phosphorylation of Smad3 induced by TGF-beta1. Furthermore, the transient overexpression of 2xFYVE, which induces the mislocalization of FYVE domain proteins, decreased the TGF-beta1-induced Smad3 phosphorylation to a similar extent to LY294002. In scleroderma fibroblasts, the blockade of PI3K significantly decreased the mRNA stability and the promoter activity of the COL1A2 gene. Furthermore, LY294002 and the transient overexpression of 2xFYVE completely diminished the constitutive phosphorylation of Smad3. These results indicate that 1) the basal activity of PI3K is necessary for the COL1A2 mRNA stabilization in normal and scleroderma fibroblasts, 2) there is an unidentified FYVE domain protein specifically interacting with Smad3, and 3) the basal activity of PI3K and the FYVE domain protein are indispensable for the efficient TGF-beta/Smad3 signaling in normal fibroblasts and for the establishment of the constitutive activation of TGF-beta/Smad3 signaling in scleroderma fibroblasts.  相似文献   

15.
We examined the signalling pathways responsible for the Ang II induction of growth in MCF-7 human breast cancer cells. Ang II in MCF-7 cells induced: (a) the translocation from the cytosol to membrane and nucleus of atypical protein kinase C-zeta (PKC-zeta) but not of PKC-alpha, -delta, - epsilon and -eta; (b) the expression of c-fos mRNA and protein; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). All these effects were due to the activation of the Ang II type I receptor (AT1) since they were blocked by the AT1 antagonist losartan. The Ang II-stimulated ERK1/2 phosphorylation was blocked by (a) high doses of staurosporine, inhibitor of PKC-zeta, and by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS); (b) PD098059, a mitogen-activated protein kinase kinase inhibitor (MAPKK/MEK); and, moreover, (c) the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin, thus indicating that PI3K may act upstream of ERK1/2. The Ang II-evoked c-fos induction was blocked only by high doses of staurosporine and by zeta-PS whilst PD098059, LY294002 and wortmannin were ineffective, thus indicating that c-fos induction is not due to ERK1/2 activity. When the epidermal growth factor-receptor (EGFR) tyrosine kinase activity was inhibited by the use of its inhibitor AG1478, Ang II was still able to induce ERK1/2 phosphorylation and c-fos expression, therefore proving that the transactivation of EGFR was not required for these Ang II effects in MCF-7 cells. The previously reported proliferation of MCF-7 cells induced by Ang II was blocked by PD098059 and by wortmannin in a dose-dependent manner, thereby indicating that in MCF-7 cells the PI3K and ERK pathways mediate the mitogenic signalling of AT1. Our results suggest that in MCF-7 cells Ang II activates multiple signalling pathways involving PKC-zeta, PI3K and MAPK; of these pathways only PKC-zeta appears responsible for the induction of c-fos.  相似文献   

16.
The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases 1 and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by G?6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When G?6976 and PD098059, or G?6976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or G?6976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC- epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC- epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC- epsilon pathways to induce c-Fos protein and HeLa cell proliferation.  相似文献   

17.
18.
19.
Keloids are skin fibrotic conditions characterized by an excess accumulation of extracellular matrix (ECM) components secondary to trauma or surgical injuries. Previous studies have shown that plasminogen activator inhibitor-1 (PAI-1) can be upregulated by hypoxia and may contribute to keloid pathogenesis. In this study we investigate the signaling mechanisms involved in hypoxia-mediated PAI-1 expression in keloid fibroblasts. Using Northern and Western blot analysis, transient transfections, and pharmacological agents, we demonstrate that hypoxia-induced upregulation of PAI-1 expression is mainly controlled by hypoxia inducible factors-1alpha (HIF-1alpha) and that hypoxia leads to a rapid and transient activation of phosphatidylinositol-3-kinase/Akt (PI3-K/Akt) and extracellular signal-regulated kinases 1/2 (ERK1/2). Treatment of cells with PI-3K/Akt inhibitor (LY294002) and tyrosine protein kinase inhibitor (genistein) significantly attenuated hypoxia-induced PAI-1 mRNA and protein expression as well as promoter activation, apparently via an inhibition of the hypoxia-induced stabilization of HIF-1alpha protein, attenuation of the steady-state level of HIF-1alpha mRNA, and its DNA-binding activity. Even though disruption of ERK1/2 signaling pathway by PD98059 abolished hypoxia-induced PAI-1 promoter activation and mRNA/protein expression in keloid fibroblasts, it did not inhibit the hypoxia-mediated stabilization of HIF-1alpha protein and the steady-state level of HIF-1alpha mRNA nor its DNA binding activity. Our findings suggest that a combination of several signaling pathways, including ERK1/2, PI3-K/Akt, and protein tyrosine kinases (PTKs), may contribute to the hypoxia-mediated induction of PAI-1 expression via activation of HIF-1alpha in keloid fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号