首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The most important parameters necessary for the creation of population models for threehost species with long-term life cycles are discussed with an example of ticks Ixodes persulcatus and I. ricinus. In these species, specimens of the same biological age may belong to different age cohorts and their calendar age may differ by several months or even years. Accurate estimation of the calendar age of separate individuals is dofficult; it is based on the extrapolation by its possible biological age and by belonging to the certain age cohort of a natural population. Population models that can predict simultaneous abundance of activated hungry specimens of all the three developmental stages and probability of host-finding in hyngry ticks during questing period possess the prognostic value. Daily mortality of ticks of different developmental stages and phases of each stage (questing, feeding, preparation for molting, and diapause) must also be known. The abundance of questing hungry ticks in the ecosystem is determined by the balance between recruitment of the population with new individuals, their selection by hosts, dying of ticks from starvation, and consumption of ticks by predators. At present, unfortunately, only some of these parameters are known rather sufficiently.  相似文献   

2.
The effects of intraspecific and interspecific interactions on preferred questing sites of ticks, specifically nymphs and larvae of Haemaphysalis longicornis and Haemaphysalis megaspinosa, were examined in Boso Peninsula of central Japan from October 1996 to September 1999. Haemaphysalis longicornis were primarily segregated from H. megaspinosa by season. All stages of the 2 tick species preferred sedges. Three-way contingency tables and log-linear models were used to test for independence of occurrence and to quantify associations between species and stages with similar host ranges. The shifts of questing site from leaves to stem tips and from 40-49 cm to greater heights were observed in both species, which suggests that these sites are more suitable for ticks and that aggregation may serve as protection from severe conditions. In contrast, a shift to a lower height was observed in H. longicornis nymphs and larvae when other species were present, suggesting that they were driven away by other species, especially H. megaspinosa. Heterospecific clusters composed of at least 2 species were formed on stem tips more frequently. It is concluded that questing site was affected by both aggregation pattern and the presence of other species.  相似文献   

3.
Ixodes ricinus is the most common tick species in Europe and vector of many diseases of humans. The risk of contracting such a disease is influenced by many factors, but one of the crucial points is questing activity of unfed ticks. In order to supplement the few literature data on patterns of diel activity of this tick species and to examine the correlations between data on diel activity of ticks and their small mammal hosts and some meteorological variables, a survey was performed. Diel activity of questing I. ricinus and small rodents was studied in a known natural tick-borne encephalitis virus focus over 7 months at one sampling day monthly. 1,063 I. ricinus ticks and 25 rodents were sampled. Air temperature and humidity data were also recorded in the 24 study plots at time of sampling. From April to October questing activity of nymphs increased in the 3-h-period after sunrise, comparing to activity of the 3 h before sunrise. Proportion of nymphs sampled 3 h after sunset compared to total sampled nymphs 3 h before and 3 h after sunset showed correlation to activity of rodents. In the period of April–July both nymphs and larvae showed stronger activity from sunrise to sunset, this turned to dominant nighttime activity in August–September, whereas activity changed to equal in day and night in October. Our results indicate that natural light and rodent population have positive effect on questing activity of I. ricinus.  相似文献   

4.
Intensive observations of the questing activity of Ixodes ricinus ticks in the field were made to provide data on the range of durations of periods of continuous questing activity, and of the variation in questing activity between individuals. Continuous periods of questing were observed to extend to a maximum of 28 hours. Substantial variation in questing activity between individuals was observed. Models fitted to the distribution of durations of bouts of questing activity provide insights into the questing ecology of I. ricinus. Results suggest that questing duration may not be solely dependent on the state of hydration of the tick. A function fitted to the frequency distribution of the proportions of active life that individuals spend on questing, provides an empirically-based model that can be used to generate a stochastic expression of variation of questing activity in individuals in a questing population.  相似文献   

5.
Pugliese A  Rosà R 《Parasitology》2008,135(13):1531-1544
Deer are important blood hosts for feeding Ixodes ricinus ticks but they do not support transmission of many tick-borne pathogens, so acting as dead-end transmission hosts. Mathematical models show their role as tick amplifiers, but also suggest that they dilute pathogen transmission, thus reducing infection prevalence. Empirical evidence for this is conflicting: experimental plots with deer removal (i.e. deer exclosures) show that the effect depends on the size of the exclosure. Here we present simulations of dynamic models that take into account different tick stages, and several host species (e.g. rodents) that may move to and from deer exclosures; models were calibrated with respect to Ixodes ricinus ticks and tick-borne encephalitis (TBE) in Trentino (northern Italy). Results show that in small exclosures, the density of rodent-feeding ticks may be higher inside than outside, whereas in large exclosures, a reduction of such tick density may be reached. Similarly, TBE prevalence in rodents decreases in large exclosures and may be slightly higher in small exclosures than outside them. The density of infected questing nymphs inside small exclosures can be much higher, in our numerical example almost twice as large as that outside, leading to potential TBE infection risk hotspots.  相似文献   

6.
Climate warming is changing distributions and phenologies of many organisms and may also impact on vectors of disease-causing pathogens. In Europe, the tick Ixodes ricinus is the primary vector of medically important pathogens (e.g., Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis). How might climate change affect I. ricinus host-seeking behavior (questing)? We hypothesize that, in order to maximize survival, I. ricinus have adapted their questing in response to temperature in accordance with local climates. We predicted that ticks from cooler climates quest at cooler temperatures than those from warmer climates. This would suggest that I. ricinus can adapt and therefore have the potential to be resilient to climate change. I. ricinus were collected from a cline of climates using a latitudinal gradient (northeast Scotland, North Wales, South England, and central France). Under laboratory conditions, ticks were subjected to temperature increases of 1°C per day, from 6 to 15°C. The proportion of ticks questing was recorded five times per temperature (i.e., per day). The theoretical potential to quest was then estimated for each population over the year for future climate change projections. As predicted, more ticks from cooler climates quested at lower temperatures than did ticks from warmer climates. The proportion of ticks questing was strongly associated with key climate parameters from each location. Our projections, based on temperature alone, suggested that populations could advance their activity season by a month under climate change, which has implications for exposure periods of hosts to tick-borne pathogens. Our findings suggest that I. ricinus have adapted their behavior in response to climate, implying some potential to adapt to climate change. Predictive models of I. ricinus dynamics and disease risk over continental scales would benefit from knowledge of these differences between populations.  相似文献   

7.
The diversity and abundance of questing ticks and ticks parasitizing birds was assessed during 1?year in two recreational forests in western Portugal, a suburban forest and an enclosed game area. The aim of this study was to assess the distribution and seasonality of tick species and to understand the role of bird species as hosts for ticks. Ixodes ricinus was the most abundant questing tick collected in the enclosed game area, whereas in the suburban forest, only three ticks were collected by blanket dragging. Tick species parasitizing birds included I. ricinus, I. frontalis, I. arboricola, I. acuminatus, Haemaphysalis punctata, Hyalomma marginatum and H. lusitanicum. This is the first record of I. arboricola in Portugal. Tick prevalence and intensity of infestation differed between study areas and was higher in birds from the game area where a large population of deer and wild boar may support tick populations. Ground and shrub dwelling bird species such as Turdus merula, Erithacus rubecula and Sylvia melanocephala were the most heavily parasitized by ticks, but the importance of different bird species as hosts of larvae and nymphs of I. ricinus and I. frontalis differed. Therefore, different bird species may contribute differently for tick population maintenance.  相似文献   

8.
Partial migration is common among northern ungulates, typically involving an altitudinal movement for seasonally migratory individuals. The main driving force behind migration is the benefit of an extended period of access to newly emerged, high quality forage along the green up gradient with increasing altitude; termed the forage maturation hypothesis. Any other limiting factor spatially correlated with this gradient may provide extra benefits or costs to migration, without necessarily being the cause of it. A common ectoparasite on cervids in Europe is the sheep tick (Ixodes ricinus), but it has not been tested whether migration may lead to the spatial separation from these parasites and thus potentially provide an additional benefit to migration. Further, if there is questing of ticks in winter ranges in May before spring migration, deer migration may also play a role for the distribution of ticks. We quantified the abundance of questing sheep tick within winter and summer home ranges of migratory (n = 42) and resident red deer (Cervus elaphus) individuals (n = 32) in two populations in May and August 2009–2012. Consistent with predictions, there was markedly lower abundance of questing ticks in the summer areas of migrating red deer (0.6/20 m2), both when compared to the annual home range of resident deer (4.9/20 m2) and the winter home ranges of migrants (5.8/20 m2). The reduced abundances within summer home ranges of migrants were explained by lower abundance of ticks with increasing altitude and distance from the coast. The lower abundance of ticks in summer home ranges of migratory deer does not imply that ticks are the main driver of migration (being most likely the benefits expected from forage maturation), but it suggests that ticks may add to the value of migration in some ecosystems and that it may act to spread ticks long distances in the landscape.  相似文献   

9.
硬蜱一些生物学特性的研究   总被引:10,自引:0,他引:10  
实验室内饲养17种硬蜱,分析和比较了它们生长发育的一些特性.硬蜱成虫、幼虫和若虫的吸血时间受温度影响不大.同一种成虫在不同寄主上吸血时间略有差别.雌虫吸血时间的长短与其生理年龄和与雄虫交配的早晚有关.雄虫较雌虫吸血时间稍长.产卵前期、产卵期、孵化期及饱食幼虫和若虫的蜕化期在不同月份有较大差异,受温度影响很大.其中,产卵前期是生活史中变异范围最大者,有些种类还具有产卵延迟的滞育现象.  相似文献   

10.
The tick Ixodes ricinus finds its hosts by climbing vegetation and adopting a sit-and-wait tactic. This “questing” behaviour is known to be temperature-dependent, such that questing increases with temperature up to a point where the vapor pressure deficit (drying effect) forces ticks down to rehydrate in the soil or mat layer. Little if any attention has been paid to understanding the questing of ticks from an evolutionary perspective. Here we ask whether populations from colder climatic conditions respond differently in terms of the threshold temperature for questing and the rate of response to a fixed temperature. We find significant variation between populations in the temperature sensitivity of questing, with populations from cooler climates starting questing at lower temperatures than populations from warmer temperatures. Cool climate populations also quest sooner when the temperature is held constant. These patterns are consistent with local adaptation to temperature either through direct selection or acclimation and challenge the use of fixed thresholds for questing in modeling the spread of tick populations. Our results also show how both time and temperature play a role in questing, but we are unable to explain the relationship in terms of degree-time used to model Arthropod development. We find that questing in response to temperature fits well with a quantitative genetic model of the conditional strategy, which reveals how selection on questing may operate and hence may be of value in understanding the evolutionary ecology of questing.  相似文献   

11.
Larvae, nymphs, and adult stages of 3 species of ixodid ticks were collected by tick drag methods in Seoul during June-October 2013, and their infection status with severe fever with thrombocytopenia syndrome (SFTS) virus was examined using RT-PCR. During the period, 732 Haemaphysalis longicornis, 62 Haemaphysalis flava, and 2 Ixodes nipponensis specimens were collected. Among the specimens of H. longicornis, the number of female adults, male adults, nymphs, and larvae were 53, 11, 240, and 446, respectively. Ticks were grouped into 63 pools according to the collection site, species, and developmental stage, and assayed for SFTS virus. None of the pools of ticks were found to be positive for SFTS virus gene.  相似文献   

12.
In Europe, 6 of the 11 genospecies of Borrelia burgdorferi sensu lato are prevalent in questing Ixodes ricinus ticks. In most parts of Central Europe, B. afzelii, B. garinii, and B. valaisiana are the most frequent species, whereas B. burgdorferi sensu stricto, B. bissettii, and B. lusitaniae are rare. Previously, it has been shown that B. afzelii is associated with European rodents. Therefore, the aim of this study was to identify reservoir hosts of B. garinii and B. valaisiana in Slovakia. Songbirds were captured in a woodland near Bratislava and investigated for engorged ticks. Questing I. ricinus ticks were collected in the same region. Both tick pools were analyzed for spirochete infections by PCR, followed by DNA-DNA hybridization and, for a subsample, by nucleotide sequencing. Three of the 17 captured songbird species were infested with spirochete-infected ticks. Spirochetes in ticks that had fed on birds were genotyped as B. garinii and B. valaisiana, whereas questing ticks were infected with B. afzelii, B. garinii, and B. valaisiana. Furthermore, identical ospA alleles of B. garinii were found in ticks that had fed on the birds and in questing ticks. The data show that songbirds are reservoir hosts of B. garinii and B. valaisiana but not of B. afzelii. This and previous studies confirm that B. burgdorferi sensu lato is host associated and that this bacterial species complex contains different ecotypes.  相似文献   

13.
Both prey density and developmental stage of pests and natural enemies are known to influence the effectiveness of biological control. However, little is known about the interaction between prey density and population structure on predation and fecundity of generalist predatory mites. Here, we evaluated the functional response (number of prey eaten by predator in relation to prey density) of adult females and nymphs of the generalist predatory mite Euseius concordis to densities of different developmental stages of the cassava green mite Mononychellus tanajoa, as well as the fecundity of adult females of the predator. We further assessed the instantaneous rate of increase, based on fecundity and mortality, of E. concordis fed on eggs, immatures and adults of M. tanajoa. Overall, nymphs and adults of E. concordis feeding on eggs, immatures and females of M. tanajoa had a type III functional response curve suggesting that the predator increased prey consumption rate as prey density increased. Both nymphs and adult females of the predator consumed more eggs than immatures of M. tanajoa from the density of 20 items per leaf disc onwards, revealing an interaction between prey density and developmental stage in the predatory activity of E. concordis. In addition, population growth rate was higher when the predator fed on eggs and immatures in comparison with females. Altogether our results suggest that E. concordis may be a good candidate for the biological control of M. tanajoa populations. However, the efficiency of E. concordis as a biological control agent of M. tanajoa is contingent on prey density and population structure.  相似文献   

14.
This paper presents an analytical literature review of the effects of abiotic factors on the different developmental stages of the ixodid ticks Ixodes persulcatus and I. ricinus. These widespread species are generally well adapted to the potential variation gradient of the factors most important for their development, such as temperature and humidity, and also other environmental conditions. Their variation usually does not significantly affect the mortality of ticks at various “passive” stages of their development cycle. However, the number of generations of both species can vary if these factors influence the percentage of fully engorged diapausing individuals.  相似文献   

15.
Tick-borne encephalitis is an important zoonosis in many parts of north-western, central and eastern Europe, Russia and the Far East, with considerable altitudinal and latitudinal shifts described during recent decades. The reported routes of transmission for TBE virus include the saliva-activated non-viraemic transmission between co-feeding ticks taking place on rodent hosts. During the period 2001–2014, a population of the yellow-necked mouse (Apodemus flavicollis), which is considered among the most efficient TBE competent host, especially in central and western Europe, was intensively live-trapped in a known TBE focus in the Province of Trento, Italy. Individual live-trapped mice were checked for the number and position of feeding ticks and serologically screened for TBEv antibodies. A combined effect of climatic conditions and density of both roe deer and mice on the number of co-feeding tick groups was observed. Specifically, the occurrence of co-feeding ticks on mice during the questing season was affected by autumnal cooling in the previous season. On the other hand, co-feeding occurrence was also positively associated with roe deer abundance, while mouse density showed a hump-shaped pattern. Individual features of A. flavicollis such as weight and sex also affected co-feeding occurrence with the heaviest (breeding adult) males carrying more co-feeding ticks. We also found that the overall number of co-feeding ticks on mice positively affected TBEv antibody detection in this species the following year. In conclusion, a specific combination of climatic conditions in conjunction with certain rodent and roe deer densities are the principal determinants of the number of co-feeding ticks on A. flavicollis and, consequently, TBEv circulation. These variables can be used to provide an early warning signal for a TBE hazard, thus representing a useful tool for Public Health authorities to prepare action for prevention and control within TBEv circulation areas.  相似文献   

16.
Tick borne encephalitis (TBE) is endemic to eastern and central Europe with broad temporal and spatial variation in infection risk. Although many studies have focused on understanding the environmental and socio-economic factors affecting exposure of humans to TBE, comparatively little research has been devoted to assessing the underlying ecological mechanisms of TBE occurrence in enzootic cycles, and therefore TBE hazard. The aim of this study was to evaluate the effect of the main ungulate tick hosts on the pattern of tick infestation in rodents and TBE occurrence in rodents and questing adult ticks. In this empirical study, we considered three areas where endemic human TBE occurs and three control sites having no reported human TBE cases. In these six sites located in Italy and Slovakia, we assessed deer density using the pellet group count-plot sampling technique, collected questing ticks, live-trapped rodents (primarily Apodemus flavicollis and Myodes glareolus) and counted ticks feeding on rodents. Both rodents and questing ticks were screened for TBE infection. TBE infection in ticks and rodents was positively associated with the number of co-feeding ticks on rodents and negatively correlated with deer density. We hypothesise that the negative relationship between deer density and TBE occurrence on a local scale (defined by the minimum overlapping area of host species) could be attributed to deer (incompetent hosts) diverting questing ticks from rodents (competent hosts), know as the 'dilution effect hypothesis'. We observed that, after an initial increase, the number of ticks feeding on rodents reached a peak for an intermediate value of estimated deer density and then decreased. Therefore, while at a regional scale, tick host availability has already been shown to be directly correlated with TBE distribution, our results suggest that the interactions between deer, rodents and ticks are much more complex on a local scale, supporting the possibility of a dilution effect for TBE.  相似文献   

17.
By serving as hosts for native vectors, introduced species can surpass native hosts in their role as major reservoirs of local pathogens. During a 4-year longitudinal study, we investigated factors that affected infestation by ixodid ticks on both introduced Siberian chipmunks Tamias sibiricus barberi and native bank voles Myodes glareolus in a suburban forest (Forêt de Sénart, Ile-de-France). Ticks were counted on adult bank voles and on adult and young chipmunks using regular monthly trapping sessions, and questing ticks were quantified by dragging. At the summer peak of questing Ixodes ricinus availability, the average tick load was 27-69 times greater on adult chipmunks than on adult voles, while average biomass per hectare of chipmunks and voles were similar. In adult chipmunks, individual effects significantly explained 31% and 24% of the total variance of tick larvae and nymph burdens, respectively. Male adult chipmunks harboured significantly more larvae and nymphs than adult females, and than juveniles born in spring and in summer. The higher tick loads, and more specifically the ratio of nymphs over larvae, observed in chipmunks may be caused by a higher predisposition - both in terms of susceptibility and exposure - to questing ticks. Tick burdens were also related to habitat and seasonal variation in age- and sex-related space use by both rodents. Introduced chipmunks may thus have an important role in the dynamics of local vector-borne pathogens compared with native reservoir hosts such as bank voles.  相似文献   

18.
The Lone Star tick, Amblyomma americanum, transmits several bacterial pathogens including species of Anaplasma and Ehrlichia. Amblyomma americanum also hosts a number of non-pathogenic bacterial endosymbionts. Recent studies of other arthropod and insect vectors have documented that commensal microflora can influence transmission of vector-borne pathogens; however, little is known about tick microbiomes and their possible influence on tick-borne diseases. Our objective was to compare bacterial communities associated with A. americanum, comparing Anaplasma/Ehrlichia -infected and uninfected ticks. Field-collected questing specimens (n = 50) were used in the analyses, of which 17 were identified as Anaplasma/Ehrlichia infected based on PCR amplification and sequencing of groEL genes. Bacterial communities from each specimen were characterized using Illumina sequencing of 16S rRNA gene amplicon libraries. There was a broad range in diversity between samples, with inverse Simpson’s Diversity indices ranging from 1.28–89.5. There were no statistical differences in the overall microbial community structure between PCR diagnosed Anaplasma/Ehrlichia-positive and negative ticks, but there were differences based on collection method (P < 0.05), collection site (P < 0.05), and sex (P < 0.1) suggesting that environmental factors may structure A. americanum microbiomes. Interestingly, there was not always agreement between Illumina sequencing and PCR diagnostics: Ehrlichia was identified in 16S rRNA gene libraries from three PCR-negative specimens; conversely, Ehrlichia was not found in libraries of six PCR-positive ticks. Illumina sequencing also helped identify co-infections, for example, one specimen had both Ehrlichia and Anaplasma. Other taxa of interest in these specimens included Coxiella, Borrelia, and Rickettsia. Identification of bacterial community differences between specimens of a single tick species from a single geographical site indicates that intra-species differences in microbiomes were not due solely to pathogen presence/absence, but may be also driven by vector life history factors, including environment, life stage, population structure, and host choice.  相似文献   

19.
Questing behavior of Ixodes uriae and their associated seasonal, host-feeding patterns are crucial to our understanding of tick life history strategies and the ecology of diseases that they transmit. Consequently, we quantified questing behavior of nymphs and adult female I. uriae ticks at Gull Island, a seabird colony in Newfoundland, Canada, to examine seasonal variation of off-host and on-host tick activity. We sampled a total of 133 adult Atlantic puffins (Fratercula arctica), 152 puffin chicks, and 145 herring gull (Larus argentatus) chicks for ticks during the breeding seasons of 2004 and 2005. Questing ticks were sampled by dragging a white flannel cloth across the grassy breeding areas during the mo of May, June, July, and August. Nymph questing activity reached a peak during mid-July (79 and 110 individuals/hr in 2004 and 2005, respectively). The prevalence of nymphs and adult female ticks on different seabird hosts varied between years and during the seasons. Puffin chicks had the highest prevalence (above 70% in July) of nymphs in both years and this was correlated with questing activity. Female ticks rarely fed on puffin chicks, but were prevalent on adult puffins and gulls, although prevalence and questing of ticks were not correlated in these hosts. These patterns of off-host and on-host tick activity suggests that I. uriae ticks likely use a combination of questing and passive waiting, e.g., in puffin burrows, to detect hosts, depending on the tick stage and the host species.  相似文献   

20.
Wild birds are important hosts for vector-borne pathogens, especially those borne by ticks. However, few studies have been conducted on the role of different bird species within a community as hosts of vector-borne pathogens. This study addressed individual and species factors that could explain the burden of Ixodes ricinus on forest birds during the reproductive periods of both vectors and hosts. The goal was to identify which bird species contribute the most to the tick population at the community level. Birds were mist-netted on four plots in 2008 and on seven plots in 2009 in two forests (Sénart and Notre Dame, near Paris, France). The dependence of the tick load per bird upon environmental conditions (questing nymph density, year and plot) and on host species traits (species, age, sex, body size, vertical space use, level of innate and acquired immunity) was analysed. Finally, the relative contribution of each bird species to the local dynamics of ticks was estimated, while accounting for their respective abundance. Tick burden differed markedly between bird species and varied according to questing nymph density. Bird species with a high body mass, those that forage low in the vegetation, and those that had a high innate immune response and a high spleen mass were more likely to have a high tick burden. Four species (the Common Blackbird, Turdus merula, the European Robin, Erithacus rubecula, the Song Thrush, Turdus philomelos, and the Winter Wren, Troglodytes troglodytes) hosted more than 90% of the ticks in the local bird community. These species, and particularly T. merula which was host to a high proportion of the nymphs, are likely to contribute significantly to the circulation of pathogens for which they are competent, such as the agent of Lyme borreliosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号