首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study demonstrated that invadopodia are associated with invasion by degradation of matrix in prostate cancer cells PC3. To find out the presence of invadopodia in PC3 cells, we performed a few comparative analyses with osteoclasts, which utilize podosomes for migration. Our investigations indeed demonstrated that invadopodia are comparable to podosomes in the localization of Wiskott-Aldrich syndrome protein (WASP)/matrix metalloproteinase-9 and the degradation of matrix. Invadopodia are different from podosomes in the localization of actin/vinculin, distribution during migration, and the mode of degradation of extracellular matrix. Invadopodia enable polarized invasion of PC3 cells into the gelatin matrix in a time-dependent manner. Gelatin degradation was confined within the periphery of the cell. Osteoclasts demonstrated directional migration with extensive degradation of matrix underneath and around the osteoclasts. A pathway of degradation of matrix representing a migratory track was observed due to the rearrangement of podosomes as rosettes or clusters at the leading edge. Reducing the matrix metalloproteinase-9 levels by RNA interference inhibited the degradation of matrix but not the formation of podosomes or invadopodia. Competition experiments with TAT-fused WASP peptides suggest that actin polymerization and formation of invadopodia involve the WASP-Arp2/3 complex pathway. Moreover, PC3 cells overexpressing osteopontin (OPN) displayed an increase in the number of invadopodia and gelatinolytic activity as compared with PC3 cells and PC3 cells expressing mutant OPN in integrin-binding domain and null for OPN. Thus, we conclude that OPN/integrin alphavbeta3 signaling participates in the process of migration and invasion of PC3 cells through regulating processes essential for the formation and function of invadopodia.  相似文献   

2.
Throughout pregnancy the cytotrophoblast, the stem cell of the placenta, gives rise to the differentiated forms of trophoblasts. The two main cell lineages are the syncytiotrophoblast and the invading extravillous trophoblast. A successful pregnancy requires extravillous trophoblasts to migrate and invade through the decidua and then remodel the maternal spiral arteries. Many invasive cells use specialised cellular structures called invadopodia or podosomes in order to degrade extracellular matrix. Despite being highly invasive cells, the presence of invadapodia or podosomes has not previously been investigated in trophoblasts. In this study these structures have been identified and characterised in extravillous trophoblasts. The role of specialised invasive structures in trophoblasts in the degradation of the extracellular matrix was compared with well characterised podosomes and invadopodia in other invasive cells and the trophoblast specific structures were characterised by using a sensitive matrix degradation assay which enabled visualisation of the structures and their dynamics. We show trophoblasts form actin rich protrusive structures which have the ability to degrade the extracellular matrix during invasion. The degradation ability and dynamics of the structures closely resemble podosomes, but have unique characteristics that have not previously been described in other cell types. The composition of these structures does not conform to the classic podosome structure, with no distinct ring of plaque proteins such as paxillin or vinculin. In addition, trophoblast podosomes protrude more deeply into the extracellular matrix than established podosomes, resembling invadopodia in this regard. We also show several significant pathways such as Src kinase, MAPK kinase and PKC along with MMP-2 and 9 as key regulators of extracellular matrix degradation activity in trophoblasts, while podosome activity was regulated by the rigidity of the extracellular matrix.  相似文献   

3.
Invadopodia and podosomes in tumor invasion   总被引:6,自引:3,他引:3  
Cell migration through the extracellular matrix (ECM) is necessary for cancer cells to invade adjacent tissues and metastasize to an organ distant from primary tumors. Highly invasive carcinoma cells form ECM-degrading membrane protrusions called invadopodia. Tumor-associated macrophages have been shown to promote the migratory phenotypes of carcinoma cells, and macrophages are known to form podosomes, similar structures to invadopodia. However, the role of invadopodia and podosomes in vivo remains to be determined. In this paper, we propose a model for possible functions and interactions of invadopodia and podosomes in tumor invasion, based on observations that macrophage podosomes degrade ECM and that podosome formation is regulated by colony-stimulating factor-1 signaling.  相似文献   

4.
Extracellular matrix rigidity promotes invadopodia activity   总被引:2,自引:0,他引:2  
Invadopodia are actin-rich subcellular protrusions with associated proteases used by cancer cells to degrade extracellular matrix (ECM) [1]. Molecular components of invadopodia include branched actin-assembly proteins, membrane trafficking proteins, signaling proteins, and transmembrane proteinases [1]. Similar structures exist in nontransformed cells, such as osteoclasts and dendritic cells, but are generally called podosomes and are thought to be more involved in cell-matrix adhesion than invadopodia [2-4]. Despite intimate contact with their ECM substrates, it is unknown whether physical or chemical ECM signals regulate invadopodia function. Here, we report that ECM rigidity directly increases both the number and activity of invadopodia. Transduction of ECM-rigidity signals depends on the cellular contractile apparatus [5-7], given that inhibition of nonmuscle myosin II, myosin light chain kinase, and Rho kinase all abrogate invadopodia-associated ECM degradation. Whereas myosin IIA, IIB, and phosphorylated myosin light chain do not localize to invadopodia puncta, active phosphorylated forms of the mechanosensing proteins p130Cas (Cas) and focal adhesion kinase (FAK) are present in actively degrading invadopodia, and the levels of phospho-Cas and phospho-FAK in invadopodia are sensitive to myosin inhibitors. Overexpression of Cas or FAK further enhances invadopodia activity in cells plated on rigid polyacrylamide substrates. Thus, in invasive cells, ECM-rigidity signals lead to increased matrix-degrading activity at invadopodia, via a myosin II-FAK/Cas pathway. These data suggest a potential mechanism, via invadopodia, for the reported correlation of tissue density with cancer aggressiveness.  相似文献   

5.
Infiltration of new tissue areas requires that a mammalian cell overcomes the physical and biochemical barrier of the surrounding extracellular matrix. Cell migration during embryonic development, and growth, invasion and dispersal of metastatic tumor cells depend to a large extent on the controlled degradation of extracellular matrix components. Localized degradation of the surrounding matrix is seen at defined adhesive (podosomes) and/or protrusive (invadopodia) locations in a variety of normal cells and aggressive carcinoma cells, suggesting that these membrane-associated cellular devices have a central role in mediating polarized migration in cells that cross-tissue boundaries. Here, we will discuss the recent advances and developments in this field, and provide our provisional outlook into the future understanding of the principles of focal extracellular matrix degradation by podosomes and invadopodia.  相似文献   

6.
The vascular basement membrane (BM) is a thin and dense cross-linked extracellular matrix layer that covers and protects blood vessels. Understanding how cells cross the physical barrier of the vascular BM will provide greater insight into the potentially critical role of vascular BM breaching in cancer extravasation, leukocyte trafficking and angiogenic sprouting. In the last year, new evidence has mechanistically linked the breaching of vascular BM with the formation of specific cellular micro-domains known as podosomes and invadopodia. These structures are specialized cell-matrix contacts with an inherent ability to degrade the extracellular matrix. Specifically, the formation of podosomes or invadopodia was shown as an important step in vascular sprouting and tumor cell extravasation, respectively. Here, we review and comment on these recent findings and explore the functions of podosomes and invadopodia within the context of pathological processes such as tumor dissemination and tumor angiogenesis.  相似文献   

7.
Invadopodia are matrix-degrading ventral cell surface structures formed in invasive carcinoma cells. Podosomes are matrix-degrading structures formed in normal cell types including macrophages, endothelial cells, and smooth muscle cells that are believed to be related to invadopodia in function. Both invadopodia and podosomes are enriched in proteins that regulate actin polymerization including proteins involved in N-WASp/WASp-dependent Arp2/3-complex activation. However, it is unclear whether invadopodia and podosomes use distinct mediators for N-WASp/WASp-dependent Arp2/3-complex activation. We investigated the localization patterns of the upstream N-WASp/WASp activators Nck1 and Grb2 in invadopodia of metastatic mammary carcinoma cells, podosomes formed in macrophages, and degradative structures formed in Src-transformed fibroblasts and PMA-stimulated endothelial cells. We provide evidence that Nck1 specifically localizes to invadopodia, but not to podosomes formed in macrophages or degradative structures formed in Src-transformed fibroblasts and PMA-stimulated endothelial cells. In contrast, Grb2 specifically localizes to degradative structures formed in Src-transformed fibroblasts and PMA-stimulated endothelial cells, but not invadopodia or podosomes formed in macrophages. These findings suggest that distinct upstream activators are responsible for N-WASp/WASp activation in invadopodia and podosomes, and that all these ventral cell surface degradative structures have distinguishing molecular as well as structural characteristics. These patterns of Nck1 and Grb2 localization, identified in our study, can be used to sub-classify ventral cell surface degradative structures.  相似文献   

8.
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.  相似文献   

9.
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.  相似文献   

10.
Yoshio T  Morita T  Kimura Y  Tsujii M  Hayashi N  Sobue K 《FEBS letters》2007,581(20):3777-3782
The podosome and invadopodium are dynamic cell-adhesion structures that degrade the extracellular matrix (ECM) and promote cell invasion. We recently reported that the actin-binding protein caldesmon is a pivotal regulator of podosome formation. Here, we analyzed the caldesmon's involvement in podosome/invadopodium-mediated invasion by transformed and cancer cells. The ectopic expression of caldesmon reduced the number of podosomes/invadopodia and decreased the ECM degradation activity, resulting in the suppression of cell invasion. Conversely, the depletion of caldesmon facilitated the formation of podosomes/invadopodia and cell invasion. Taken together, our results indicate that caldesmon acts as a potent repressor of cancer cell invasion.  相似文献   

11.
Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface.  相似文献   

12.
Cell-to-extracellular matrix (ECM) adhesion plays important roles in various biological events, such as proliferation, differentiation, and migration. Distinct from other types of adhesion structures (focal complexes, focal adhesions, and so on), podosomes and invadopodia are thought to have additional functions beyond attachment, possibly including invasion into the ECM. For podosomes and invadopodia to invade into the ECM, molecules involved in adhesion, actin polymerization, and ECM degradation must be recruited to sites of action. Our recent study demonstrated that podosomes form near newly formed focal adhesions via the minimally expressed phosphoinositide PtdIns(3,4)P2-mediated recruitment of the Tks5-Grb2 scaffold, followed by the accumulation of N-WASP. Although this study demonstrated details of molecular interplay during the transformation of focal adhesion, its regulation in the in vivo invasion process remains to be clarified. Here, we discuss the molecular bases of the transformation of focal adhesions to podosomes/invadopodia based on current understanding.  相似文献   

13.
In Rous sarcoma virus (RSV)-transformed baby hamster kidney (BHK) cells, invadopodia can self-organize into rings and belts, similarly to podosome distribution during osteoclast differentiation. The composition of individual invadopodia is spatiotemporally regulated and depends on invadopodia localization along the ring section: the actin core assembly precedes the recruitment of surrounding integrins and integrin-linked proteins, whereas the loss of the actin core was a prerequisite to invadopodia disassembly. We have shown that invadopodia ring expansion is controlled by paxillin phosphorylations on tyrosine 31 and 118, which allows invadopodia disassembly. In BHK-RSV cells, ectopic expression of the paxillin mutant Y31F-Y118F induces a delay in invadopodia disassembly and impairs their self-organization. A similar mechanism is unraveled in osteoclasts by using paxillin knockdown. Lack of paxillin phosphorylation, calpain or extracellular signal-regulated kinase inhibition, resulted in similar phenotype, suggesting that these proteins belong to the same regulatory pathways. Indeed, we have shown that paxillin phosphorylation promotes Erk activation that in turn activates calpain. Finally, we observed that invadopodia/podosomes ring expansion is required for efficient extracellular matrix degradation both in BHK-RSV cells and primary osteoclasts, and for transmigration through a cell monolayer.  相似文献   

14.
Cell-to-extracellular matrix (ECM) adhesion plays important roles in various biological events, such as proliferation, differentiation and migration. Distinct from other types of adhesion structures (focal complexes, focal adhesions and so on), podosomes and invadopodia are thought to have additional functions beyond attachment, possibly including invasion into the ECM. For podosomes and invadopodia to invade into the ECM, molecules involved in adhesion, actin polymerization and ECM degradation must be recruited to sites of action. Our recent study demonstrated that podosomes form near newly formed focal adhesions via the minimally expressed phosphoinositide PtdIns(3,4) P2-mediated recruitment of the Tks5-Grb2 scaffold, followed by the accumulation of N-WASP. Although this study demonstrated details of molecular interplay during the transformation of focal adhesion, its regulation in the in vivo invasion process remains to be clarified. Here, we discuss the molecular bases of the transformation of focal adhesions to podosomes/invadopodia based on current understanding.Key words: podosome, invadopodium, focal adhesion, Tks5, PtdIns(3,4)P2, N-WASP  相似文献   

15.
16.
Metalloproteinase-dependent tissue invasion requires the formation of podosomes and invadopodia for localized matrix degradation. Actin cytoskeleton remodeling via Arp2/3-mediated actin polymerization is essential for podosome formation, and dynamic microtubules have an important role in maintaining podosome turnover in macrophages and osteoclasts. Little is known, however, about the involvement of the intermediate filament cytoskeleton in formation, stabilization, and turnover of podosomes. Here we show that vimentin intermediate filaments colocalize with the early sites of podosome formation at the stress fiber - focal adhesion interface in cultured vascular smooth muscle cells, but do not directly contribute to podosome formation, or stabilization. In unstimulated A7r5 cells the cytolinker protein plectin poorly colocalized with vimentin and the microdomains, but following induction by phorbol ester accumulated in the rings that surround the podosomes. In plectin-deficient A7r5 cells actin stress fiber remodelling is reduced in response to PDBu, and small podosomes remain localized at stable actin stress fibres. Pharmacological inhibition of actomyosin contractility by blebbistatin leads to an aberrant localization of podosomes away from the cell periphery and induces failure of plectin to surround the outer perimeter of these invasive adhesions. Taken together, we conclude that plectin is involved in growth and maturation of podosomes by reducing focal adhesion and stress fiber turnover, and that actomyosin-dependent contractility is required for the peripheral localization and specific deposition of plectin at the podosome rings.  相似文献   

17.
Invadopodia are cellular structures that are thought to mediate tumor invasion. ASAP1, an Arf GTPase-activating protein (GAP) containing a BAR domain, is a substrate of Src. ASAP1 is required for the assembly of invadopodia and podosomes, which are Src-induced structures related to invadopodia in NIH 3T3 fibroblasts. The BAR domain of ASAP1 is required for the assembly of podosomes. Using two-hybrid screening, we have identified GEFH1, a guanine nucleotide exchange factor for RhoA, as a binding partner of the BAR domain of ASAP1. We validated the interaction of endogenous GEFH1 with ASAP1 by immunoprecipitation, and found GEFH1 colocalized with ASAP1 in podosomes. The overexpression of GEFH1 inhibited podosome assembly and ASAP1 catalytic activity as a GAP. A mutant of GEFH1 lacking the domain that binds to the BAR domain of ASAP1 was less effective. Reduced expression of GEFH1, achieved with siRNA treatment, did not affect matrix degradation by podosomes but increased the rate of podosome assembly. Based on these results, we conclude that GEFH1 is a negative regulator of podosomes.  相似文献   

18.
Podosomes and invadopodia are actin-rich protrusions of the plasma membrane important for matrix degradation and cell migration. Most of the information in this field has been obtained in cancer cells, where the presence of invadopodia has been related to increased invasiveness and metastatic potential. The importance of the related podosome structure in other pathological or physiological processes that require cell invasion is relatively unexplored. Recent evidence indicates that essential components of podosomes are responsible for several human syndromes, some of which are characterized by serious developmental defects involving the craniofacial area, skeleton and heart, and very poor prognosis. Here we will review them and discuss the possible role of podosomes as a player in correct embryo development.  相似文献   

19.
Invadopodia are actin-based protrusions of the plasma membrane that penetrate into the extracellular matrix (ECM), and enzymatically degrade it. Invadopodia and podosomes, often referred to, collectively, as “invadosomes,” are actin-based membrane protrusions that facilitate matrix remodeling and cell invasion across tissues, processes that occur under specific physiological conditions such as bone remodeling, as well as under pathological states such as bone, immune disorders, and cancer metastasis. In this review, we specifically focus on the functional architecture of invadopodia in cancer cells; we discuss here three functional domains of invadopodia responsible for the metalloproteinase-based degradation of the ECM, the cytoskeleton-based mechanical penetration into the matrix, and the integrin adhesome-based adhesion to the ECM. We will describe the structural and molecular organization of each domain and the cross-talk between them during the invasion process.  相似文献   

20.
Invadopodia are actin-based protrusions of the plasma membrane that penetrate into the extracellular matrix (ECM), and enzymatically degrade it. Invadopodia and podosomes, often referred to, collectively, as “invadosomes,” are actin-based membrane protrusions that facilitate matrix remodeling and cell invasion across tissues, processes that occur under specific physiological conditions such as bone remodeling, as well as under pathological states such as bone, immune disorders, and cancer metastasis. In this review, we specifically focus on the functional architecture of invadopodia in cancer cells; we discuss here three functional domains of invadopodia responsible for the metalloproteinase-based degradation of the ECM, the cytoskeleton-based mechanical penetration into the matrix, and the integrin adhesome-based adhesion to the ECM. We will describe the structural and molecular organization of each domain and the cross-talk between them during the invasion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号