首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Transendothelial lipid transport into and spread in the subendothelial intima of large arteries, and subsequent lipid accumulation, appear to start plaque formation. We experimentally examine transendothelial horseradish peroxidase (HRP) transport in vessels that are usually, e.g., pulmonary artery (PA), or almost always, e.g., inferior vena cava (IVC), atherosclerosis resistant vs. disease prone, e.g., aorta, vessels. In these vessels, HRP traverses the endothelium at isolated, focal spots, rather than uniformly, for short circulation times. For femoral vein HRP introduction, PA spots have 30-s radii [ approximately 53.2 microm (SD 10.4); compare aorta: 54.6 microm (SD 8.75)] and grow quickly from 30 s to 1 min (40%, P<0.05) and more slowly afterward (P>0.05). This trend resembles the aorta, suggesting the PA has a similarly sparse intima. With carotid artery (CA) HRP introduction, the 30-s spot (132.86 +/- 37.32 microm) is far larger than the PAs, grows little ( approximately 28%, P<0.05) from 30 to 60 s, and is much flatter than the artery curves. Transverse electron microscopic sections after approximately 10 min HRP circulation show thin, intense staining immediately beneath both vessels' endothelia with an almost step change to diffuse staining beyond. This indicates the existence of a sparse, subendothelial intima, even when there is no internal elastic lamina (IVC). This motivates a simple model that translates growth rates into lower bounds for the flow through focal leaks. The model results and our earlier wall and medial hydraulic conductivity data explain these spot growth curves and point to differences in transport patterns that might be relevant in understanding the immunity of IVC to disease initiation.  相似文献   

2.
A nonlinear anisotropic model for porcine aortic heart valves   总被引:2,自引:0,他引:2  
Li J  Luo XY  Kuang ZB 《Journal of biomechanics》2001,34(10):1279-1289
The anisotropic property of porcine aortic valve leaflet has potentially significant effects on its mechanical behaviour and the failure mechanisms. However, due to its complex nature, testing and modelling the anisotropic porcine aortic valves remains a continuing challenge to date. This study has developed a nonlinear anisotropic finite element model for porcine heart valves. The model is based on the uniaxial experimental data of porcine aortic heart valve leaflet and the properties of nonlinear composite material. A finite element code is developed to solve this problem using the 8-node super-parameter nonlinear shells and the update Lagrangian method. The stress distribution and deformation of the porcine aortic valves with either uniform and non-uniform thicknesses in closed phase and loaded condition are calculated. The results showed significant changes in the stress distributions due to the anisotropic property of the leaflets. Compared with the isotropic valve at the same loading condition, it is found that the site of the peak stress of the anisotropic leaflet is different; the maximum longitudinal normal stress is increased, but the maximum transversal normal stress and in-plane shear stress are reduced. We conclude that it is very important to consider the anisotropic property of the porcine heart valves in order to understand the failure mechanism of such valves in vivo.  相似文献   

3.
4.
The pulmonary artery (PA) wall, which has much higher hydraulic conductivity and albumin void space and approximately one-sixth the normal transmural pressure of systemic arteries (e.g, aorta, carotid arteries), is rarely atherosclerotic, except under pulmonary hypertension. This study constructs a detailed, two-dimensional, wall-structure-based filtration and macromolecular transport model for the PA to investigate differences in prelesion transport processes between the disease-susceptible aorta and the relatively resistant PA. The PA and aorta models are similar in wall structure, but very different in parameter values, many of which have been measured (and therefore modified) since the original aorta model of Huang et al. (23). Both PA and aortic model simulations fit experimental data on transwall LDL concentration profiles and on the growth of isolated endothelial (horseradish peroxidase) tracer spots with circulation time very well. They reveal that lipid entering the aorta attains a much higher intima than media concentration but distributes better between these regions in the PA than aorta and that tracer in both regions contributes to observed tracer spots. Solutions show why both the overall transmural water flow and spot growth rates are similar in these vessels despite very different material transport parameters. Since early lipid accumulation occurs in the subendothelial intima and since (matrix binding) reaction kinetics depend on reactant concentrations, the lower intima lipid concentrations in the PA vs. aorta likely lead to slower accumulation of bound lipid in the PA. These findings may be relevant to understanding the different atherosusceptibilities of these vessels.  相似文献   

5.
Transcatheter aortic valve replacement (TAVR) is a safe and effective treatment option for patients deemed at high and intermediate risk for surgical aortic valve replacement. Similar to surgical aortic valves (SAVs), transcatheter aortic valves (TAVs) undergo calcification and mechanical wear over time. However, to date, there have been limited publications on the long-term durability of TAV devices. To assess longevity and mechanical strength of TAVs in comparison to surgical bioprosthetic valves, three-dimensional deformation analysis and strain measurement of the leaflets become an inevitable part of the evaluation. The goal of this study was to measure and compare leaflet displacement and strain of two commonly used TAVs in a side-by-side comparison with a commonly used SAV using a high-resolution digital image correlation (DIC) system. 26-mm Edwards SAPIEN 3, 26-mm Medtronic CoreValve, and 25-mm Carpentier-Edwards PERIMOUNT Magna surgical bioprosthesis were examined in a custom-made valve testing apparatus. A time-varying, spatially uniform pressure was applied to the leaflets at different loading rates. GOM ARAMIS® software was used to map leaflet displacement and strain fields during loading and unloading. High displacement regions were found to be at the leaflet belly region of the three bioprosthetic valves. In addition, the frame of the surgical bioprosthesis was found to be remarkably flexible, in contrary to CoreValve and SAPIEN 3 in which the stent was nearly rigid under a similar loading condition. The experimental DIC measurements can be used to characterize the anisotropic materiel behavior of the bioprosthetic heart valve leaflets and validate heart valve computational simulations.  相似文献   

6.
The heart valve leaflets of 29-day cholesterol-fed rabbits were examined by ultrarapid freezing without conventional chemical fixation/processing, followed by rotary shadow freeze-etching. This procedure images the leaflets' subendothelial extracellular matrix in extraordinary detail, and extracellular lipid liposomes, from 23 to 220 nm in diameter, clearly appear there. These liposomes are linked to matrix filaments and appear in clusters. Their size distribution shows 60.7% with diameters 23-69 nm, 31.7% between 70 and 119 nm, 7.3% between 120 and 169 nm, and 0.3% between 170 and 220 nm (superlarge) and suggests that smaller liposomes can fuse into larger ones. We couple our model from Part II of this series (Zeng Z, Yin Y, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 292: H2671-H2686, 2007) for lipid transport into the leaflet to the nucleation-polymerization model hierarchy for liposome formation proposed originally for aortic liposomes to predict liposome formation/growth in heart valves. Simulations show that the simplest such model cannot account for the observed size distribution. However, modifying this model by including liposome fusing/merging, using parameters determined from aortic liposomes, leads to predicted size distributions in excellent agreement with our valve data. Evolutions of both the liposome size distribution and total liposome mass suggest that fusing becomes significant only after 2 wk of high lumen cholesterol. Inclusion of phagocytosis by macrophages limits the otherwise monotonically increasing total liposome mass, while keeping the excellent fit of the liposome size distribution to the data.  相似文献   

7.
Functional analysis of bioprosthetic heart valves   总被引:2,自引:0,他引:2  
Glutaraldehyde-treated bovine pericardium is used successfully as bioprosthetic material in the manufacturing of heart valves leaflets. The mechanical properties of bovine pericardial aortic valve leaflets seem to influence its mechanical behaviour and the failure mechanisms. In this study the effect of orthotropy on tricuspid bioprosthetic aortic valve was analysed, using a three-dimensional finite element model, during the entire cardiac cycle. Multiaxial tensile tests were also performed to determine the anisotropy of pericardium. Seven different models of the same valve were analysed using different values of mechanical characteristics from one leaflet to another, considering pericardium as an orthotropic material. The results showed that even a small difference between values along the two axes of orthotropy can negatively influence leaflets performance as regard both displacement and stress distribution. Leaflets of bovine pericardium bioprostheses could be manufactured to be similar to natural human heart valves reproducing their well-known anisotropy. In this way it could be possible to improve the manufacturing process, durability and function of pericardial bioprosthetic valves.  相似文献   

8.
Valve interstitial cells (VICs) are responsible for maintaining the structural integrity and dynamic behaviour of the valve. Telocytes (TCs), a peculiar type of interstitial cells, have been recently identified by Popescu's group in epicardium, myocardium and endocardium (visit www.telocytes.com ). The presence of TCs has been identified in atria, ventricles and many other tissues and organ, but not yet in heart valves. We used transmission electron microscopy and immunofluorescence methods (double labelling for CD34 and c‐kit, or vimentin, or PDGF Receptor‐β) to provide evidence for the existence of TCs in human heart valves, including mitral valve, tricuspid valve and aortic valve. TCs are found in both apex and base of heart valves, with a similar density of 27–28 cells/mm2 in mitral valve, tricuspid valve and aortic valve. Since TCs are known for the participation in regeneration or repair biological processes, it remains to be determined how TCs contributes to the valve attempts to re‐establish normal structure and function following injury, especially a complex junction was found between TCs and a putative stem (progenitor) cell.  相似文献   

9.
Venous valves play a crucial role in blood circulation, promoting the one-way movement of blood from superficial and deep veins towards the heart. By preventing retrograde flow, venous valves spare capillaries and venules from being subjected to damaging elevations in pressure, especially during skeletal muscle contraction. Pathologically, valvular incompetence or absence of valves are common features of venous disorders such as chronic venous insufficiency and varicose veins. The underlying causes of these conditions are not well understood, but congenital venous valve aplasia or agenesis may play a role in some cases. Despite progress in the study of cardiac and lymphatic valve morphogenesis, the molecular mechanisms controlling the development and maintenance of venous valves remain poorly understood. Here, we show that in valved veins of the mouse, three gap junction proteins (Connexins, Cxs), Cx37, Cx43, and Cx47, are expressed exclusively in the valves in a highly polarized fashion, with Cx43 on the upstream side of the valve leaflet and Cx37 on the downstream side. Surprisingly, Cx43 expression is strongly induced in the non-valve venous endothelium in superficial veins following wounding of the overlying skin. Moreover, we show that in Cx37-deficient mice, venous valves are entirely absent. Thus, Cx37, a protein involved in cell–cell communication, is one of only a few proteins identified so far as critical for the development or maintenance of venous valves. Because Cxs are necessary for the development of valves in lymphatic vessels as well, our results support the notion of common molecular pathways controlling valve development in veins and lymphatic vessels.  相似文献   

10.
11.
PURPOSE: To reduce the time taken for thawing and removal of cryoprotectant from heart valves. METHODS: Three sets of experiments were carried out using porcine heart valves. The valves in all three experiments were first exposed to 10% (v/v) dimethyl sulphoxide (DMSO) by a 2-step protocol. Outcome was determined after the various experimental treatments by monitoring the outgrowth of cells from valve leaflet explants. Experiment 1-Dilution protocol. Valves exposed to 10% DMSO were subjected to 4-, 2- or 1-step dilution to remove the DMSO. Experiment 2-Warming rate. The rate of warming was increased by reducing the volume of cryoprotectant medium in which the valves were frozen. Valves were exposed to 10% DMSO, frozen in different volumes (100, 50, 25 or 0 ml) of cryoprotectant medium, and warmed in a 37 degrees C water bath. The DMSO was removed by 4-step dilution. Experiment 3-Standard vs. Modified protocol. Valves were either frozen in 100 ml 10% DMSO, thawed, and subjected to 4-step dilution (Standard) or frozen in 50 ml 10% DMSO, thawed, and the DMSO removed by single-step dilution (Modified). RESULTS: Neither the rate of warming nor the rate of dilution of DMSO had any influence on the subsequent outgrowth of valve leaflet fibroblasts. There were no differences in the outgrowth of cells from valve leaflets cryopreserved by the Standard or Modified protocols. CONCLUSION: The time taken for thawing and dilution of heart valves could be reduced from >20 min to <10 min without detriment to the viability of the leaflet fibroblasts. This should have a positive impact on valve replacement surgery as the thawing and dilution of valves are typically carried out while the patients are on cardiopulmonary bypass.  相似文献   

12.
Regions of turbulence downstream of bioprosthetic heart valves may cause damage to blood components, vessel wall as well as to aortic valve leaflets. Stentless aortic heart valves are known to posses several hemodynamic benefits such as larger effective orifice areas, lower aortic transvalvular pressure difference and faster left ventricular mass regression compared with their stented counterpart. Whether this is reflected by diminished turbulence formation, remains to be shown. We implanted either stented pericardial valve prostheses (Mitroflow), stentless valve prostheses (Solo or Toronto SPV) in pigs or they preserved their native valves. Following surgery, blood velocity was measured in the cross sectional area downstream of the valves using 10MHz ultrasonic probes connected to a dedicated pulsed Doppler equipment. As a measure of turbulence, Reynolds normal stress (RNS) was calculated at two different blood pressures (baseline and 50% increase). We found no difference in maximum RNS measurements between any of the investigated valve groups. The native valve had significantly lower mean RNS values than the Mitroflow (p=0.004), Toronto SPV (p=0.008) and Solo valve (p=0.02). There were no statistically significant differences between the artificial valve groups (p=0.3). The mean RNS was significantly larger when increasing blood pressure (p=0.0006). We, thus, found no advantages for the stentless aortic valves compared with stented prosthesis in terms of lower maximum or mean RNS values. Native valves have a significantly lower mean RNS value than all investigated bioprostheses.  相似文献   

13.
目前临床使用的各种机械心脏瓣膜的主要问题是血栓栓塞和与抗凝治疗有关的出血,其缺陷在于瓣膜开启时,碟片和支架将瓣膜的整个血流通道分隔成三至四个较小的血流通道。在这种受阻隔的血流通宫,形成容易诱发血栓的高剪应力区、紊流和滞流区。我们研制的两种机械心脏瓣膜在瓣膜开启时,没有任何支架和碟片分隔瓣膜的血流通道,使血流与天然心脏瓣膜中的相类似,可减少对血液的危害,从而可减少换瓣病人对抗凝治疗的依赖程度。  相似文献   

14.
The dimensions of the aortic valve components condition its ability to prevent blood from flowing back into the heart. While the theoretical parameters for best trileaflet valve performance have already been established, an effective approach to describe other less optimal, but functional models has been lacking. Our goal was to establish a method to determine by how much the dimensions of the aortic valve components can vary while still maintaining proper function. Measurements were made on silicone rubber casts of human aortic valves to document the range of dimensional variability encountered in normal adult valves. Analytical equations were written to describe a fully three-dimensional geometric model of a trileaflet valve in both the open and closed positions. A complete set of analytical, numerical and graphical tools was developed to explore a range of component dimensions within functional aortic valves. A list of geometric guidelines was established to ensure safe operation of the valve during the cardiac cycle, with practical safety margins. The geometry-based model presented here allows determining quickly if a certain set of valve component dimensions results in a functional valve. This is of great interest to designers of new prosthetic heart valve models, as well as to surgeons involved in valve-sparing surgery.  相似文献   

15.
The stress and strain states of the valve leaflets during fixation with glutaraldehyde affect their final mechanical parameters. Comparative studies of the stress-strain relationships of aortic valve leaflet strips from fresh, statically and dynamically fixed porcine and human valves were made. Static pressures of 5 mmHg, 16 mmHg, and 95 mmHg result in stress-strain relationships which are in a region between that of fresh porcine and fresh human leaflet strips in the circumferential direction, while they are far from that of fresh porcine tissue (larger strains) in the radial direction. Leaflet strips, fixed under dynamic loading between zero and a predefined maximum load, set at an early post-transition state, give parameters not significantly different from those of human valves.  相似文献   

16.
In aortic valve sparing surgery, cusp prolapse is a common cause of residual aortic insufficiency. To correct cusp pathology, native leaflets of the valve frequently require adjustment which can be performed using a variety of described correction techniques, such as central or commissural plication, or resuspension of the leaflet free margin. The practical question then arises of determining which surgical technique provides the best valve performance with the most physiologic coaptation. To answer this question, we created a new finite element model with the ability to simulate physiologic function in normal valves, and aortic insufficiency due to leaflet prolapse in asymmetric, diseased or sub-optimally repaired valves. The existing leaflet correction techniques were simulated in a controlled situation, and the performance of the repaired valve was quantified in terms of maximum leaflets stress, valve orifice area, valve opening and closing characteristics as well as total coaptation area in diastole. On the one hand, the existing leaflet correction techniques were shown not to adversely affect the dynamic properties of the repaired valves. On the other hand, leaflet resuspension appeared as the best technique compared to central or commissural leaflet plication. It was the only method able to achieve symmetric competence and fix an individual leaflet prolapse while simultaneously restoring normal values for mechanical stress, valve orifice area and coaptation area.  相似文献   

17.
With advances in tissue engineering and improvement of surgical techniques, stentless biological valves and valve-sparing procedures have become alternatives to traditional aortic valve replacement with stented bioprostheses or mechanical valves. New surgical techniques preserve the advantages of native valves but require better understanding of the anatomical structure of the aortic root. Silicone rubber was injected in fresh aortic roots of nine human cadavers under the physiological closing pressure of 80 mmHg. The casts reproduced every detail of the aortic root anatomy and were used to digitize 27 leaflet attachment lines (LALs) of the aortic valves. LALs were normalized and described with a mathematical model. LALs were found to follow a pattern with the right coronary being the largest followed by the non-coronary and then the left coronary. During diastole, the aortic valve LAL can be described by an intersection between a created tube and an extruded parabolic surface. This geometrical definition of the LAL during end diastole gives a better understanding of the aortic root anatomy and could be useful for heart valve design and improvement of aortic valve reconstruction technique.  相似文献   

18.
Tissue engineering of heart valves utilizes biodegradable or metabolizable scaffolds for remodeling by seeded autologous cells. The aim of this study was to determine and compare extracellular matrix (ECM) formations, cellular phenotypes and cell location of native and tissue engineered (TE) valve leaflets. Ovine carotid arteries, ovine and porcine hearts were obtained from slaughterhouses. Cells were isolated from carotid arteries and dissected ovine, porcine and TE leaflets. TE constructs were fabricated from decellularized porcine pulmonary valves, seeded ovine arterial cells and subsequent 16 days dynamic in vitro culture using a pulsatile bioreactor. Native and TE valves were studied by histology (hematoxylin-eosin, resorcin-fuchsin, Movat pentachrome), NIR femtosecond multiphoton laser scanning microscopy and scanning electron microscopy (SEM). Cells of native and TE tissues were identified and localized by immunohistochemistry. Arterial, valvular and re-isolated TE-construct cells were processed for immunocytochemistry and Western blotting. ECM analysis and SEM revealed characteristical and comparable structures in native and TE leaflets. Most cells in native leaflets stained strongly positive for vimentin. Cells positive to alpha-smooth muscle actin (alpha-SMA), myosin and calponin were only found at the ventricular (inflow) side of ovine aortic and porcine pulmonary valve leaflets. Cells from TE constructs had a strong expression of vimentin, alpha-SMA, myosin, calponin and h-caldesmon throughout the entire leaflet. Comparable ECM formation and endothelial cell lining of native and TE leaflets could be demonstrated. However, immunostaining revealed significant differences between valvular cell phenotypes of native and TE leaflets. These results may be essential for further cardiovascular tissue engineering efforts.  相似文献   

19.
There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation–but more pronounced in aortic valves–the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.  相似文献   

20.
Patients with bicuspid aortic valve (BAV) are more likely to develop a calcific aortic stenosis (CAS), as well as a number of other ailments, as compared to their cohorts with normal tricuspid aortic valves (TAV). It is currently unknown whether the increase in risk of CAS is caused by the geometric differences between the tricuspid and bicuspid valves or whether the increase in risk is caused by the same underlying factors that produce the geometric difference. CAS progression is understood to be a multiscale process, mediated at the cell level. In this study, we employ multiscale finite-element simulations of the valves. We isolate the effect of one geometric factor, the number of cusps, in order to explore its effect on multiscale valve mechanics, particularly in relation to CAS. The BAV and TAV are modeled by a set of simulations describing the cell, tissue, and organ length scales. These simulations are linked across the length scales to create a coherent multiscale model. At each scale, the models are three-dimensional, dynamic, and incorporate accurate nonlinear constitutive models of the valve leaflet tissue. We compare results between the TAV and BAV at each length scale. At the cell-scale, our region of interest is the location where calcification develops, near the aortic-facing surface of the leaflet. Our simulations show the observed differences between the tricuspid and bicuspid valves at the organ scale: the bicuspid valve shows greater flexure in the solid phase and stronger jet formation in the fluid phase relative to the tricuspid. At the cell-scale, however, we show that the region of interest is shielded against strain by the wrinkling of the fibrosa. Thus, the cellular deformations are not significantly different between the TAV and BAV in the calcification-prone region. This result supports the assertion that the difference in calcification observed in the BAV versus TAV may be due primarily to factors other than the simple geometric difference between the two valves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号