首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent studies have revealed that sphingomyelin (SM) is involved in metabolic syndrome and is a new target of an anti-metabolic syndrome drug. Deficiencies in the enzyme SM synthase 1 (SMS1) result in severe abnormalities, whereas deficiencies in SMS2 do not. SMS1 and SMS2 synthesize SM under similar conditions, so their respective activities cannot be measured separately. We report here on a sensitive, high-throughput and reliable cell-based method to separately measure each SMS activity and to screen for SMS-specific inhibitors, using HPLC and fluorescent ceramide (Cer) analogs. We isolated SMS-null cells and stably transfected them with SMS1 or SMS2. Using these cells, individual SMS activities could be measured separately. Fluorescent Cer, SM, and glucosylceramide analogs could be separated within 4 min by HPLC using an NH2 column. SMS activities of SMS1- or SMS2-expressing cells seeded in a single well of a 96-well plate could be measured using HPLC and fluorescent Cer analogs. This method clearly demonstrated that treatment of the cells with their respective siRNA or D609, an inhibitor of SMS, resulted in a significant decrease in each SMS activity. These results indicate that our newly developed method can be utilized for screening therapeutics against metabolic syndrome that target SMS2.  相似文献   

2.
Smith-Magenis syndrome (SMS) is a rare syndrome with multiple congenital malformations, including development and mental retardation, behavioral problems and a distinct facial appearance. SMS is caused by haploinsufficiency of RAI1 (deletion or mutation of RAI1). We describe an eight-year-old female Chinese patient with multiple malformations, congenital heart defect, mental retardation, and behavioral problems (self hugging, sleeping disturbance). High-resolution genome wide single nucleotide polymorphism array revealed a 3.7-Mb deletion in chromosome region 17p11.2. This chromosome region contains RAI1, a critical gene involved in SMS. To the best of our knowledge, this is the first report of an SMS patient in mainland China.  相似文献   

3.
Smith-Magenis syndrome (SMS) and duplication 17p11.2 (dup17p11.2) syndrome are multiple congenital anomalies/mental retardation disorders resulting from either a deletion or duplication of the 17p11.2 region, respectively. The retinoic acid induced 1 (RAI1) gene is the causative gene for SMS and is included in the 17p11.2 region of dup17p11.2 syndrome. Currently SMS and dup17p11.2 syndrome are diagnosed using a combination of clinically recognized phenotypes and molecular cytogenetic analyses such as fluorescent in situ hybridization (FISH). However, these methods have proven to be highly expensive, time consuming, and dependent upon the low resolving capabilities of the assay. To address the need for improved diagnostic methods for SMS and dup17p11.2 syndrome, we designed a quantitative real-time PCR (Q-PCR) assay that measures RAI1 copy number using the comparative C(t) method, DeltaDeltaC(t). We tested our assay with samples blinded to their previous SMS or dup17p11.2 syndrome status. In all cases, we were able to determine RAI1 copy number status and render a correct diagnosis accordingly. We validated these results by both FISH and multiplex ligation-dependent probe amplification (MLPA). We conclude that Q-PCR is an accurate, reproducible, low-cost, and reliable assay that can be employed for routine use in SMS and dup17p11.2 diagnosis.  相似文献   

4.
5.
The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described--the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability.  相似文献   

6.
Disorders known to be caused by molecular and cytogenetic abnormalities of the proximal short arm of chromosome 17 include Charcot-Marie-Tooth disease type 1A (CMT1A), hereditary neuropathy with liability to pressure palsies (HNPP), Smith-Magenis syndrome (SMS), and mental retardation and congenital anomalies associated with partial duplication of 17p. We identified a patient with multifocal mononeuropathies and mild distal neuropathy, growth hormone deficiency, and mild mental retardation who was found to have a duplication of the SMS region of 17p11.2 and a deletion of the peripheral myelin protein 22 (PMP22) gene within 17p12 on the homologous chromosome. Further molecular analyses reveal that the dup(17)(p11.2p11.2) is a de novo event but that the PMP22 deletion is familial. The family members with deletions of PMP22 have abnormalities indicative of carpal tunnel syndrome, documented by electrophysiological studies prior to molecular analysis. The chromosomal duplication was shown by interphase FISH analysis to be a tandem duplication. These data indicate that familial entrapment neuropathies, such as carpal tunnel syndrome and focal ulnar neuropathy syndrome, can occur because of deletions of the PMP22 gene. The co-occurrence of the 17p11.2 duplication and the PMP22 deletion in this patient likely reflects the relatively high frequency at which these abnormalities arise and the underlying molecular characteristics of the genome in this region.  相似文献   

7.
A male child with multiple congenital anomalies initially was clinically diagnosed as having Smith-Lemli-Opitz syndrome (SLOS). Subsequent cytogenetic studies revealed an interstitial deletion of 17p11.2, which is associated with Smith-Magenis syndrome (SMS). Biochemical studies were not supportive of a diagnosis of SLOS, and the child did not display the typical SMS phenotype. The father's karyotype showed a paracentric inversion of 17p, with breakpoints in p11.2 and p13.3, and the same inversion was also found in two of the father's sisters. FISH analyses of the deleted and inverted 17p chromosomes indicated that the deletion was similar to that typically seen in SMS patients and was found to bracket the proximal inversion breakpoint. Available family members were genotyped at 33 polymorphic DNA loci in 17p. These studies determined that the deletion was of paternal origin and that the inversion was of grandpaternal origin. Haplotype analysis demonstrated that the 17p11.2 deletion arose following a recombination event involving the father's normal and inverted chromosome 17 homologues. A mechanism is proposed to explain the simultaneous deletion and apparent "reinversion" of the recombinant paternal chromosome. These findings have implications for prenatal counseling of carriers of paracentric inversions, who typically are considered to bear minimal reproductive risk.  相似文献   

8.
The Smith-Magenis syndrome (SMS) appears to be a contiguous-gene-deletion syndrome associated with a proximal deletion of the short arm of chromosome 17 in band p11.2. The spectrum of clinical findings includes short stature, brachydactyly, developmental delay, dysmorphic features, sleep disturbances, and behavioral problems. The complex phenotypic features suggest deletion of several contiguous genes. However, to date, no protein-encoding gene has been mapped to the SMS critical region. Recently, the Drosophila melanogaster flightless-I gene, fliI, and the homologous human cDNA have been isolated. Mutations in fliI result in loss of flight ability and, when severe, cause lethality due to incomplete cellularization with subsequent abnormal gastrulation. Here, we demonstrate that the human homologue (FLI) maps within the SMS critical region. Genomic cosmids were used as probes for FISH, which localized this gene to the 17p11.2 region. Somatic-cell hybrid-panel mapping further localized this gene to the SMS critical region. Southern blot analysis of somatic-cell hybrids and/or FISH analysis of lymphoblastoid cell lines from 12 SMS patients demonstrates the deletion of one copy of FLI in all SMS patients analyzed.  相似文献   

9.
Folate-dependent one-carbon metabolism is critical for the synthesis of numerous cellular constituents required for cell growth, and serine hydroxymethyltransferase (SHMT) is central to this process. Our studies reveal that the gene for cytosolic SHMT (cSHMT) maps to the critical interval for Smith-Magenis syndrome (SMS) on chromosome 17p11.2. The basic organization of the cSHMT locus on chromosome 17 was determined and was found to be deleted in all 26 SMS patients examined by PCR, FISH, and/or Southern analysis. Furthermore, with respect to haploinsufficiency, cSHMT enzyme activity in patient lymphoblasts was determined to be approximately 50% that of unaffected parent lymphoblasts. Serine, glycine, and folate levels were also assessed in three SMS patients and were found to be within normal ranges. The possible effects of cSHMT hemizygosity on the SMS phenotype are discussed.  相似文献   

10.
Smith-Magenis syndrome (SMS) is a clinically recognizable, multiple congenital anomalies/mental retardation syndrome caused by an interstitial deletion involving band p11.2 of chromosome 17. Toward the molecular definition of the interval defining this microdeletion syndrome, 62 unrelated SMS patients in conjunction with 70 available unaffected parents were molecularly analyzed with respect to the presence or absence of 14 loci in the proximal region of the short arm of chromosome 17. A multifaceted approach was used to determine deletion status at the various loci that combined (i) FISH analysis, (ii)PCR and Southern analysis of somatic cell hybrids retaining the deleted chromosome 17 from selected patients, and (iii) genotype determination of patients for whom a parent(s) was available at four microsatellite marker loci and at four loci with associated RFLPs. The relative order of two novel anonymous markers and a new microsatellite marker was determined in 17p11.2. The results confirmed that the proximal deletion breakpoint in the majority of SMS patients is located between markers D17S58 (EW301) and D17S446 (FG1) within the 17p11.1-17p11.2 region. The common distal breakpoint was mapped between markers cCI17-638, which lies distal to D17S71, and cCI17-498, which lies proximal to the Charcot Marie-Tooth disease type 1A locus. The locus D17S258 was found to be deleted in all 62 patients, and probes from this region can be used for diagnosis of the SMS deletion by FISH. Ten patients demonstrated molecularly distinct deletions; of these, two patients had smaller deletions and will enable the definition of the critical interval for SMS.  相似文献   

11.
Autoimmunity to gephyrin in Stiff-Man syndrome   总被引:7,自引:0,他引:7  
Stiff-Man syndrome (SMS) is a rare disease of the central nervous system (CNS) characterized by chronic rigidity, spasms, and autoimmunity directed against synaptic antigens, most often the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD). In a subset of cases, SMS has an autoimmune paraneoplastic origin. We report here the identification of high-titer autoantibodies directed against gephyrin in a patient with clinical features of SMS and mediastinal cancer. Gephyrin is a cytosolic protein selectively concentrated at the postsynaptic membrane of inhibitory synapses, where it is associated with GABA(A) and glycine receptors. Our findings provide new evidence for a close link between autoimmunity directed against components of inhibitory synapses and neurological conditions characterized by chronic rigidity and spasms.  相似文献   

12.

Background

The polyamine system has been implicated in a number of psychiatric conditions, which display both alterations in polyamine levels and altered expression of genes related to polyamine metabolism. Studies have identified associations between genetic variants in spermidine/spermine N1-acetyltransferase (SAT1) and both anxiety and suicide, and several polymorphisms appear to play important roles in determining gene expression.

Methodology/Principal Findings

We genotyped 63 polymorphisms, spread across four polyaminergic genes (SAT1, spermine synthase (SMS), spermine oxidase (SMOX), and ornithine aminotransferase like-1 (OATL1)), in 1255 French-Canadian individuals who have been followed longitudinally for 22 years. We assessed univariate associations with anxiety, mood disorders, and attempted suicide, as assessed during early adulthood. We also investigated the involvement of gene-environment interactions in terms of childhood abuse, and assessed internalizing and externalizing symptoms as endophenotypes mediating these interactions. Overall, each gene was associated with at least one main outcome: anxiety (SAT1, SMS), mood disorders (SAT1, SMOX), and suicide attempts (SAT1, OATL1). Several SAT1 polymorphisms displayed disease-specific risk alleles, and polymorphisms in this gene were involved in gene-gene interactions with SMS to confer risk for anxiety disorders, as well as gene-environment interactions between childhood physical abuse and mood disorders. Externalizing behaviors demonstrated significant mediation with regards to the association between OATL1 and attempted suicide, however there was no evidence that externalizing or internalizing behaviors were appropriate endophenotypes to explain the associations with mood or anxiety disorders. Finally, childhood sexual abuse did not demonstrate mediating influences on any of our outcomes.

Conclusions/Significance

These results demonstrate that genetic variants in polyaminergic genes are associated with psychiatric conditions, each of which involves a set of separate and distinct risk alleles. As several of these polymorphisms are associated with gene expression, these findings may provide mechanisms to explain the alterations in polyamine metabolism which have been observed in psychiatric disorders.  相似文献   

13.
We report the construction of a physical map of the region of mouse chromosome 11 that encompasses shaker-2 (sh2), a model for the human nonsyndromic deafness DFNB3. DFNB3 maps within the common deletion region of Smith-Magenis syndrome (SMS), del(17)(p11.2p11.2). Eleven of the genes mapping within the SMS common deletion region have murine homologs on the sh2 physical map. The gene order in this region is not perfectly conserved between mouse and human, a finding to be considered as we engineer a mouse model of Smith-Magenis syndrome.  相似文献   

14.
Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now.  相似文献   

15.
Sulfometuron methyl is a potent and specific inhibitor of acetolactate synthase II in Salmonella typhimurium. Mutant strains sensitive to sulfometuron methyl on minimal medium were isolated following mutagenesis with Tn10. A conditionally auxotrophic insertion mutant, strain SMS409, which required aspartate at high temperatures or in the presence of tyrosine, was found among the 15 mutants isolated. The Tn10 insertion in strain SMS409 was mapped by conjugation and transduction to the region between aroA and pncB at 20 min on the chromosome of S. typhimurium; this location is similar to the genetic location of aspC in Escherichia coli. The specific activity of the aspC product, aspartate aminotransferase, was severely reduced in strain SMS409. This indicated that the Tn10 insertion in strain SMS409 inactivated aspC. An aspC mutant of E. coli was also inhibited by either sulfometuron methyl or tyrosine. We present a hypothesis which relates the observed alpha-ketobutyrate accumulation in sulfometuron methyl-inhibited cultures of strain SMS409 to aspartate starvation.  相似文献   

16.
A potent and long-acting somatostatin analogue, SMS 201-995 (SMS) is currently employed for the treatment of various diseases with hypersecretion of hormones such as acromegaly and gastrinoma. The suppressive effects of SMS are also reported on the other pituitary and gastrointestinal hormones. The corticotropic-adrenocortical axis is a crucial hormonal complex in maintaining normal activity and life itself. In this study, the effects of SMS on corticotropic-adrenocortical functions were studied, since the effects of SMS on this hormonal axis are not well established. Seven normal males received a sc injection of 100 micrograms SMS or placebo at 0830 h and 100 micrograms synthetic human corticotropin-releasing hormone (hCRH) intravenously (SMS-hCRH study). Five of the 7 subjects were given an injection of a synthetic (1-24) ACTH (250 micrograms or 63 micrograms) at 0900 h after 100 micrograms SMS or a placebo at 0830 h (SMS-ACTH study). Blood samples were drawn at -30, 0, 15, 30, 60, 90 and 120 min after the hCRH injection for the determination of ACTH and cortisol in the SMS-hCRH study, and cortisol and aldosterone in the SMS-ACTH study. Although significant rises in plasma ACTH and cortisol levels were observed regardless of the preinjection of SMS, their responses to hCRH were significantly lower with the pretreatment with SMS than without SMS. A significant increase in plasma cortisol and aldosterone was observed in response to synthetic ACTH with both ACTH alone and the combined administration of SMS and ACTH, at either dose of ACTH. However, no significant difference in cortisol and aldosterone secretion was detected with and without SMS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We undertook clinical evaluation (32 cases) and molecular evaluation (31 cases) of unrelated patients affected with Smith-Magenis syndrome (SMS) associated with an interstitial deletion of band p11.2 of chromosome 17. Patients were evaluated both clinically and electrophysiologically for peripheral neuropathy, since markers showing close linkage to one form of Charcot-Marie-Tooth disease (CMT1A) map to this chromosomal region. The common clinical findings were broad flat midface with brachycephaly, broad nasal bridge, brachydactyly, speech delay, and hoarse, deep voice. Fifty-five percent of the patients showed clinical signs (e.g., decreased or absent deep tendon reflexes, pes planus or pes cavus, decreased sensitivity to pain, and decreased leg muscle mass) suggestive of peripheral neuropathy. However, unlike patients with CMT1A, these patients demonstrated normal nerve conduction velocities. Self-destructive behaviors, primarily onychotillomania and polyembolokoilamania, were observed in 67% of the patients, and significant symptoms of sleep disturbance were observed in 62%. The absence of REM sleep was demonstrated by polysomnography in two patients. Southern analysis indicated that most patients were deleted for five 17p11.2 markers--FG1 (D17S446), 1516 (D17S258), pYNM67-R5 (D17S29), pA10-41 (D17S71), and pS6.1-HB2 (D17S445)--thus defining a region which appears to be critical to SMS. The deletion was determined to be of paternal origin in nine patients and of maternal origin in six patients. The apparent random parental origin of deletion documented in 15 patients suggests that genomic imprinting does not play a role in the expression of the SMS clinical phenotype. Our findings suggest that SMS is likely a contiguous-gene deletion syndrome which comprises characteristic clinical features, developmental delay, clinical signs of peripheral neuropathy, abnormal sleep function, and specific behavioral anomalies.  相似文献   

18.
Singleton-Merten syndrome (SMS) is an infrequently described autosomal-dominant disorder characterized by early and extreme aortic and valvular calcification, dental anomalies (early-onset periodontitis and root resorption), osteopenia, and acro-osteolysis. To determine the molecular etiology of this disease, we performed whole-exome sequencing and targeted Sanger sequencing. We identified a common missense mutation, c.2465G>A (p.Arg822Gln), in interferon induced with helicase C domain 1 (IFIH1, encoding melanoma differentiation-associated protein 5 [MDA5]) in four SMS subjects from two families and a simplex case. IFIH1 has been linked to a number of autoimmune disorders, including Aicardi-Goutières syndrome. Immunohistochemistry demonstrated the localization of MDA5 in all affected target tissues. In vitro functional analysis revealed that the IFIH1 c.2465G>A mutation enhanced MDA5 function in interferon beta induction. Interferon signature genes were upregulated in SMS individuals’ blood and dental cells. Our data identify a gain-of-function IFIH1 mutation as causing SMS and leading to early arterial calcification and dental inflammation and resorption.  相似文献   

19.
The functional contribution of CNV to human biology and disease pathophysiology has undergone limited exploration. Recent observations in humans indicate a tentative link between CNV and weight regulation. Smith-Magenis syndrome (SMS), manifesting obesity and hypercholesterolemia, results from a deletion CNV at 17p11.2, but is sometimes due to haploinsufficiency of a single gene, RAI1. The reciprocal duplication in 17p11.2 causes Potocki-Lupski syndrome (PTLS). We previously constructed mouse strains with a deletion, Df(11)17, or duplication, Dp(11)17, of the mouse genomic interval syntenic to the SMS/PTLS region. We demonstrate that Dp(11)17 is obesity-opposing; it conveys a highly penetrant, strain-independent phenotype of reduced weight, leaner body composition, lower TC/LDL, and increased insulin sensitivity that is not due to alteration in food intake or activity level. When fed with a high-fat diet, Dp(11)17/+ mice display much less weight gain and metabolic change than WT mice, demonstrating that the Dp(11)17 CNV protects against metabolic syndrome. Reciprocally, Df(11)17/+ mice with the deletion CNV have increased weight, higher fat content, decreased HDL, and reduced insulin sensitivity, manifesting a bona fide metabolic syndrome. These observations in the deficiency animal model are supported by human data from 76 SMS subjects. Further, studies on knockout/transgenic mice showed that the metabolic consequences of Dp(11)17 and Df(11)17 CNVs are not only due to dosage alterations of Rai1, the predominant dosage-sensitive gene for SMS and likely also PTLS. Our experiments in chromosome-engineered mouse CNV models for human genomic disorders demonstrate that a CNV can be causative for weight/metabolic phenotypes. Furthermore, we explored the biology underlying the contribution of CNV to the physiology of weight control and energy metabolism. The high penetrance, strain independence, and resistance to dietary influences associated with the CNVs in this study are features distinct from most SNP-associated metabolic traits and further highlight the potential importance of CNV in the etiology of both obesity and MetS as well as in the protection from these traits.  相似文献   

20.
Smith-Magenis syndrome (SMS) is a complex congenital anomaly characterized by craniofacial anomalies, neurological and behavioral disorders. SMS is caused by a deletion in region 17p11.2, which includes the RAI1 gene (90% of cases), or by point mutation in the RAI1 gene (10% of cases). Laboratory diagnosis is through cytogenetic analysis by GTG banding and molecular cytogenetic analysis by FISH. We carried out an active search for patients in Associations of Parents and Friends of Exceptional Children (APAE) of S?o Paulo and genetic centers in Brazil. Forty-eight patients were screened for mental retardation, craniofacial abnormalities and stereotyped behavior with a diagnosis of SMS. In seven of them, chromosome banding at high resolution demonstrated chromosome 17p11.2 deletions, confirmed by FISH. We also made a meta-analysis of 165 cases reported between 1982 and 2010 to compare with the clinical data of our sample. We demonstrated differences between the frequencies of clinical signs among the cases reported and seven Brazilian cases of this study, such as dental anomalies, strabismus, ear infections, deep hoarse voice, hearing loss, and cardiac defects. Although the gold standard for diagnosis of SMS is FISH, we found that the GTG banding technique developed to evaluate chromosome 17 can be used for the SMS diagnosis in areas where the FISH technique is not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号