首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the seasonal variation of fecundity, wing and tibia length were investigated in natural populations of Chrysomya albiceps (Wiedemann, 1819) in an attempt to determine the changes in life history of the species as a function of seasonality. A relative constant temporal trajectory was found for fecundity, wing and tibia length over twenty-four months. Positive correlations between fecundity and wing size, fecundity and tibia size and wing and tibia sizes were observed. The implications of these results for population dynamics of C. albiceps are discussed.  相似文献   

2.
Abstract:  The theoretical dynamics of experimental populations of Lucilia eximia was investigated as an attempt to understand its population biology. Specifically the population dynamics of L. eximia was analysed by means of a mathematical model that incorporates fecundity and survival as density-dependent demographic parameters in discrete time. The sensitivity of these parameters to changes in the magnitude was also investigated. The mathematical model applied to experimental populations of L. eximia predicts a theoretical one-point equilibrium for immatures. The population dynamics of L. eximia is compared to the dynamics of Chrysomya species and Cochliomyia macellaria.  相似文献   

3.
Synopsis Life history variation within the family Embiotocidae is extensive and involves differences in age of first reproduction, fecundity schedules, growth rates, longevity and size of young. Based on maximum reported body lengths, there are three distinct size groups among the family's 23 species. Small species do not exceed 215 mm TL, medium-size species attain 275 to 335 mm TL, and the large species attain 380 to 470 mm TL. The longevity oh surfperches varies from two to ten years, growth is indeterminate, and females of the medium-and large-size groups may delay first reproduction beyond age one. With one exception, all species show increasing length-specific fecundities. The life history characteristics of females differ among the three size groups. Relative to smaller species, the largest species have moderately high fecundity, delayed maturity and long life. Medium-size species have low fecundity, may delay maturity for 1 to 3 years and have intermediate life spans. Small species have generally higher, but variable, fecundity, do not delay maturity, and are short lived. Among the small North American species, the trend in fecundity varies inversely with environmental predictability. Fecundity is highest in the species which occupies highly seasonal freshwater environments. Coastal species produce moderately large broods and species which occupy stable deep water environments produce the smallest broods.  相似文献   

4.
The snails Lymnaea columella and Lymnaea cousini have both been reported as intermediate hosts of Fasciola hepatica in Colombia. The effect of the exposure to the parasite on survival, fecundity and size of these snails was evaluated by means of experimental infections and the life history traits of control and exposed groups were compared. Infection rates were 82.2 and 34% for L. columella and L. cousini, respectively. A reduction in fitness was observed in both species when exposed to the parasite: fecundity alone was reduced in L. columella whereas in L. cousini there was also a decline in survival rate. Unlike other studies, increased size was not observed in either species. On the contrary, a reduction in growth rate was observed in L. columella.  相似文献   

5.
Mammals display considerable geographical variation in life history traits. To understand how climatic factors might influence this variation, we analysed the relationship between life history traits – adult body size, litter size, number of litters per year, gestation length, neonate body mass, weaning age and age at sexual maturity – and several environmental variables quantifying the seasonality and predictability of temperature and precipitation across the distribution range of five terrestrial mammal groups. Environmental factors correlated strongly with each other; therefore, we used principal components analysis to obtain orthogonal climatic predictors that could be used in multivariate models. We found that in bats, primates and even‐toed ungulates adult body size tends to be larger in species inhabiting cold, dry, seasonal environments, whereas in carnivores and rodents a smaller body size is characteristic of warm, dry environments, suggesting that low food availability might limit adult size. Species inhabiting cold, dry, seasonal habitats have fewer, larger litters and shorter gestation periods; however, annual fecundity in these species is not higher, implying that the large litter size of mammals living at high latitudes is probably a consequence of time constraints imposed by strong seasonality. On the other hand, the number of litters per year and annual fecundity were greater in species inhabiting environments with higher seasonality in precipitation. Lastly, we found little evidence for specific effects of environmental variability. Our results highlight the complex effects of environmental factors in the evolution of life history traits in mammals. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 719–736.  相似文献   

6.
Several studies have examined how climatic variables such as temperature and precipitation may affect life history traits in mosquitoes that are important to disease transmission. Despite its importance as a seasonal cue in nature, studies investigating the influence of photoperiod on such traits are relatively few. This study aims to investigate how photoperiod alters life history traits, survival, and blood‐feeding activity in Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus). We performed three experiments that tested the effects of day length on female survival, development time, adult size, fecundity, adult life span, and propensity to blood feed in Ae. albopictus and Ae. aegypti. Each experiment had three photoperiod treatments: 1) short‐day (10L:14D), 2) control (12L:12D), and 3) long‐day (14L:10D). Aedes albopictus adult females were consistently larger in size when reared in short‐day conditions. Aedes aegypti adult females from short‐day treatments lived longer and were more likely to take a blood meal compared to other treatments. We discuss how species‐specific responses may reflect alternative strategies evolved to increase survival during unfavorable conditions. We review the potential impacts of these responses on seasonal transmission patterns, such as potentially increasing vectorial capacity of Ae. aegypti during periods of shorter day lengths.  相似文献   

7.
Development, survival and reproductive performance of coexisting ladybird species, viz. Cheilomenes sexmaculata, Coccinella septempunctata, and Coccinella transversalis, of the tribe Coccinellini were studied and compared to assess their coexistence and ecological relationships. High values of life history parameters, viz. developmental rate,immature survival, fecundity, egg viability, reproductive rate and conversion of efficiency of ingested food were recorded for C. sexmaculata followed by C. transversalis and C.septempunctata suggesting that the former has intrinsic advantages over the latter two species. This could possibly counterbalance its disadvantages, like relatively smaller size and weight, thereby making it competitive. The developmental period increased with increase in body size. Exceptionally high fecundity after single mating has been recorded in C. sexmaculata. The egg viability, however, was lower than in both Coccinella species.  相似文献   

8.
The discovery of a lowland Amazonian wing‐dimorphic carabid species, Colliuris batesi Chaudoir, prompted a complete study of its biology and behaviour over a period of more than 4 years. Studies were made on development, fecundity, gonad development, life span and habitat shifts. Survival strategies and possible adaptations are examined with respect to seasonal flooding of their habitat. It is proposed that evolution of brachyptery in this species is rather recent in origin because macropterous specimens are widespread across the upper Amazon Basin, and because the only body change associated with short wings has been narrowing of the humeri.  相似文献   

9.
Summary In the wing dimorphic milkweed-oleander aphid,Aphis nerii, winged aphids begin reproducing about 1.5 days after wingless aphids. The longer maturation period is primarily due to slower development since even adult eclosion by winged aphids takes place after wingless aphids begin reproducing. The delay is not due to a post-eclosion, pre-reproductive flight since, beginning with the fourth instar, larval winged aphids were reared at a density of one per plant and the vast majority were not stimulated to fly under such low-density conditions. Thus, the ability to fly incurs a fitness cost in terms of delayed reproduction, irrespective of whether flight actually occurs. We did not observe a difference between morphs for lifetime fecundity, even though wingless aphids have larger abdomens than winged aphids and for both morphs there is a significant correlation between abdomen width and fecundity. Offspring produced by wingless aphids over the first four days of reproduction are larger than those produced by winged aphids, and the size difference at birth is maintained into adulthood. However, there are no differences in life history traits between these offspring, including maturation period and lifetime fecundity. Thus, reduced body size does not increase the cost of being able to fly, at least under the conditions of these experiments. The cost of being able to fly in this species should favor reduced production of winged individuals in populations that exploit more permanent host plants.  相似文献   

10.
The effects of fishing on life history traits and life history strategies of teleost fishes are analysed by a new comparative method that splits traits into an allometric part (size effect), an autoregressive phylogenetic component, and an environmental component (fishing effect). Both intra- and inter-specific variation of age and size at maturity, fecundity, adult size and egg size are analysed by comparing 84 populations of 49 species submitted to various fishing pressures. Two axes of life history diversification are found among teleosts. One is the well-known slow-fast continuum separating short-lived and early maturing species (like Clupeiformes) from longer-lived species that mature late relative to their size and spawn larger eggs (like salmonids or Scorpaeniformes). An additional strategy involves the schedule of resource allocation to growth and reproduction. Indeterminate growth allows higher teleosts (e.g. Gadiformes) to reach a large size while maturing early and laying small eggs. Increasing fishing pressure decreases age at maturity and egg size, and increases fecundity at maturity, the slope of the fecundity-length relationship and relative size at maturity. These compensations for higher adult mortality differ among life history strategies. Indeterminate growth is associated with a greater flexibility in resource allocation to growth and reproduction that facilitates greater resilience to fishing mortality.  相似文献   

11.
Using horizontal starch gel electrophoresis, ten enzyme systems were surveyed in ten populations of Tetramesa reared from eight species of grass collected from different sites in Britain. Eight species of Tetramesa were recognized on the basis of the number and relative mobilities of electromorph bands for larvae, pupae and adults. No differences were found between populations of T. hyalipennis (Walk.) reared from Elymus repens (L.) and E.farctus (Viv.) or between populations of T. eximia (Gir.) reared from Calamagrostis epigejos (L.) Roth and Ammophila arenaria (L.) Link. Experiments on mate-choice and host preference also supported the electrophoretic results for populations of T. hyalipennis and T. eximia.  相似文献   

12.
Migration is a common life‐history strategy that includes traits such as directed flight, increased wing size, seasonal lipid deposition and reproductive arrest. The degree of investment in these traits ultimately determines the life‐history strategy of individuals. Partial migration is a common mixed life‐history strategy where species or populations consist of both migrant and resident individuals. While this phenomenon is widespread across taxa, the ecological factors that select for and maintain partial migration are poorly understood, especially among insects. Here, we investigate regional life‐history traits associated with migration in the southern monarch, Danaus erippus, and describe a mixed life‐history strategy in this butterfly. Individuals from the Bolivian lowlands were observed throughout the year exhibiting mate‐ and milkweed‐directed behaviors. These butterflies had smaller wings, lower wing loads and maintained constant lipid and egg loads across summer and autumn months. Danaus erippus in the highlands of the Bolivian Andes were observed only in the summer and autumn months, during which they also showed mate‐ and milkweed‐directed behaviors. These individuals possessed similar‐sized wings and maintained similar lipid and egg loads as the lowland butterflies. In contrast, individuals from northwest Argentina showed persistent, directed, southwesterly flight during the autumn (March–May), larger wing size, higher wing loads, and increased autumn lipid deposition along with decreased egg production. These data indicate that D. erippus utilizes a mixed life‐history strategy with a combination of residents and migrants in the Bolivian lowlands, elevational migrants in the Bolivian Andes, and latitudinal migrants in northwestern Argentina.  相似文献   

13.
Over its exceptionally wide geographical range the minnow displays a remarkable variability in its life history. In southern England many fish mature after one year and few fish survive to their third birthday. Very few fish spawned for more than one season but a 65-mm female is estimated to spawn up to 3172 eggs over the extended spawning season. In the River Utsjoki in Finnish Lapland maturity was strongly size-dependent and delayed until the fish reached 5, 6 or even 7 years of age, with a maximum age of 13 years at a length of only 75 mm. Unlike some other small-sized species in unproductive environments, individual females continued to spawn successive clutches of eggs though over a much shorter spawning season. The maximum estimated egg production was 824 for a 65-mm fish. Temperature had a strong direct or indirect effect on growth, with significantly lower growth increments in cold summers. At a second Arctic site in eastern Lapland growth rates were higher and maturity earlier, yet clutch size was greatly reduced with a seasonal fecundity estimate of only 314. There were only small differences in size of eggs or larvae between the populations. Evidence from other species indicates that most of the observed changes over the range of the minnow are phenotypic responses to the contrasting environments. However, the different strategies displayed at the two Arctic sites could represent the results of selection for differences in pre- and post-reproductive survival.  相似文献   

14.
Abstract. 1. Reproductive costs associated with flight capability were evaluated in the wing dimorphic planthopper, Prokelisia dolus Wilson, by comparing the life history of traits of winged (macropterous) and flightless (brachypterous) females under controlled laboratory conditions.
2. Macropters with large thoraces and fully developed wings maintain a greater investment in flight apparatus than brachypters with small thoraces and reduced wings.
3. Associated with greater flight capability in the macropter of P.dolus are shorter adult life, decreased total fecundity, and delayed age at first reproduction compared to brachypterous females.
4. Under field conditions where mortality is high, the difference in realized fecundity between the two wing forms living on similar resources is further exaggerated with the brachypter having the greater advantage.
5. When the life history traits of the wing forms of P. dolus are compared with traits for nine other species of planthoppers, two similarities emerge. First, the preoviposition period of the macropterous wing form is always longer than that for the brachypter resulting in a reproductive delay. Second, most studies show that macropters are less fecund than brachypters.
6. There is no general tendency among planthopper species for macropterous adults to live fewer days or develop more slowly as nymphs compared to their flightless counterparts.
7. The reproductive delay and reduced fecundity of the volent wing form of planthoppers supports the notion that flight capability is costly and that phenotypic trade-offs between flight and reproduction exist.  相似文献   

15.
Summary Evidence for genetically determined life history variability within a population or a species is rare. In this three year experimental examination of a parthenogenetically reproducing population of the planktonic crustacean Daphnia parvula, we found evidence for a succession of clones or groups of clones that exhibited distinctive body size and reproductive differences that were maintained after numerous generations under standardized conditions in the laboratory. The D. parvula population reached maximum density in the fall and maintained relatively high densities through the winter and spring. Isolates from this fall-winter-spring period all had a larger body size at death and higher fecundity when compared with summer isolates under natural food and temperature conditions. These differences could not be accounted for by differences in temperature and food abundance among the seasons. An additional difference in these experiments was a shift in reproductive effort by the summer isolate which produced a higher proportion of its offspring in the first two broods. The shift in life history characteristics and a summer decline of the Daphnia parvula population was correlated with both an increase in inedible and perhaps toxic blue-green algae and an increase in a dipteran predator Chaoborus. Comparison of the survivorship curves for all of the seasonal life history experiments indicated that D. parvula survivorship was not lower during the summer discounting a toxic effect from blue-green algae. Positive population growth on natural food in the laboratory at this time indicated food was not limiting and that predation was the probable cause of the population decline.Laboratory life history experiments under standardized food and temperature conditions were run with D. parvula isolates from the spring and summer plankton. Genetically based differences as determined in these experiments were smaller body size, lower fecundity, smaller brood size, and shorter life span for the summer animals relative to spring animals. Thirty seven percent of the summer animals also reproduced at an earlier age under standardized conditions. The shift in reproductive effort to earlier broods by summer animals rnder natural conditions appeared to be a phenotypic response as the summer isolate did not produce a higher proportion of its offspring in early broods under standardized conditions.When estimates of predatory mortality were added to the life tables of the standardized experiments, the earlier reproduction of some of the summer animals allowed a population increase under a regime of intense predation. Life tables for the spring animals predicted a population decline under these circumstances. Predictable seasonal changes in biotic factors such as predation suggest a mechanism whereby diverse life history patterns with corresponding differences in r may be maintained within a population.  相似文献   

16.
1. We collated information from the literature on life history traits of the roach (a generalist freshwater fish), and analysed variation in absolute fecundity, von Bertalanffy parameters, and reproductive lifespan in relation to latitude, using both linear and non-linear regression models. We hypothesized that because most life history traits are dependent on growth rate, and growth rate is non-linearly related with temperature, it was likely that when analysed over the whole distribution range of roach, variation in key life history traits would show non-linear patterns with latitude.
2. As fecundity depends strongly on length, and the length structure of females varied among populations, latitudinal patterns in fecundity were examined based on residuals from the length–fecundity relationship. The reproductive lifespan of roach was estimated as the difference between age at maturity and maximum age of females in each population.
3. The three life history traits of roach analysed all varied among populations and were non-linearly related to latitude. Only the relationship between reproductive lifespan and latitude was a better fit to a linear that to a quadratic model, although Loess smoothing curves revealed that this relationship was actually closer to biphasic than linear in form. A latitude of 50°N formed a break point in all three life history traits.
4. The negative relationships we have described between (i) fecundity and reproductive lifespan and (ii) fecundity and egg mass suggest that lower fecundity is compensated for by longer lifespan, while lower fecundity is compensated for by an increased egg mass, when analysed independently of location.  相似文献   

17.
The life‐history tactics of the stone loach Barbatula barbatula were studied in a Mediterranean‐type climate stream (Matarranya River) located in the Ebro River basin (north‐east Spain). Maximum observed ages were 2+ years in both sexes (1% of individuals), although only 0+ and 1+ year age groups were well represented. It is the lowest longevity reported for this species in its entire distribution. The seasonal growth period started in June and continued until November, but the pattern observed was different to northern populations. Barbatula barbatula in the Matarranya River was a multiple spawner, releasing small batches of oocytes between April and June. The fecundity of females was higher and the size of oocytes smaller in 1984 than in 1985. The relative fecundity (number of ripening and ripe oocytes g?1 of fish) was lower than in northern European populations. The role of the particular environmental conditions of a Mediterranean stream was discussed in relation to the life‐history tactics of B. barbatula.  相似文献   

18.
This study was designed to examine life history flexibility arising from phenotypic plasticity in response to temperature and from maternal effects in response to reproductive diapause in a temperate zone population of the milkweek bug (Oncopeltus fasciatus). We employed a split-family, first-cousin, full-sib design with siblings reared at different temperatures in order to quantify phenotypic plasticity, maternal effects, and variation for each. The following traits were analyzed: development time, age at first reproduction, longevity, early-life fecundity, and wing length. We found both life history plasticity and maternal effects on life history traits which tend to enhance the colonizing ability of offspring born to mothers that have undergone reproductive diapause. We were unable to demonstrate additive genetic variation for plasticity for any of the traits, while for development time and wing length we found variation due to non-additive genetic or common-environmental sources. We were also unable to demonstrate additive genetic variation for maternal effects, although variation may exist at low levels that are difficult to detect using cousin-families. The apparent lack of variation in this population would constrain evolution of life history flexibility even though considerable flexibility exists in the phenotype.  相似文献   

19.
Selection is expected to optimize reproductive investment resulting in characteristic trade‐offs among traits such as brood size, offspring size, somatic maintenance, and lifespan; relative patterns of energy allocation to these functions are important in defining life‐history strategies. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems, but little is known about their life‐history strategies, particularly patterns of fecundity and reproductive effort. Because mussels have an unusual life cycle in which larvae (glochidia) are obligate parasites on fishes, differences in host relationships are expected to influence patterns of reproductive output among species. I investigated fecundity and reproductive effort (RE) and their relationships to other life‐history traits for a taxonomically broad cross section of North American mussel diversity. Annual fecundity of North American mussel species spans nearly four orders of magnitude, ranging from < 2000 to 10 million, but most species have considerably lower fecundity than previous generalizations, which portrayed the group as having uniformly high fecundity (e.g. > 200000). Estimates of RE also were highly variable, ranging among species from 0.06 to 25.4%. Median fecundity and RE differed among phylogenetic groups, but patterns for these two traits differed in several ways. For example, the tribe Anodontini had relatively low median fecundity but had the highest RE of any group. Within and among species, body size was a strong predictor of fecundity and explained a high percentage of variation in fecundity among species. Fecundity showed little relationship to other life‐history traits including glochidial size, lifespan, brooding strategies, or host strategies. The only apparent trade‐off evident among these traits was the extraordinarily high fecundity of Leptodea, Margaritifera, and Truncilla, which may come at a cost of greatly reduced glochidial size; there was no relationship between fecundity and glochidial size for the remaining 61 species in the dataset. In contrast to fecundity, RE showed evidence of a strong trade‐off with lifespan, which was negatively related to RE. The raw number of glochidia produced may be determined primarily by physical and energetic constraints rather than selection for optimal output based on differences in host strategies or other traits. By integrating traits such as body size, glochidial size, and fecundity, RE appears more useful in defining mussel life‐history strategies. Combined with trade‐offs between other traits such as growth, lifespan, and age at maturity, differences in RE among species depict a broad continuum of divergent strategies ranging from strongly r‐selected species (e.g. tribe Anodontini and some Lampsilini) to K‐selected species (e.g. tribes Pleurobemini and Quadrulini; family Margaritiferidae). Future studies of reproductive effort in an environmental and life‐history context will be useful for understanding the explosive radiation of this group of animals in North America and will aid in the development of effective conservation strategies.  相似文献   

20.
Deterministic filters such as competition and prey defences should have a strong influence on the community structure of animals such as insectivorous bats that have life histories characterized by low fecundity, low predation risk, long life expectancy, and stable populations. We investigated the relative influence of these two deterministic filters on the phenotypic structure of insectivorous bat ensembles in southern Africa. We used null models to simulate the random phenotypic patterns expected in the absence of competition or prey defences and analysed the deviations of the observed phenotypic pattern from these expected random patterns. The phenotypic structure at local scales exhibited non-random patterns consistent with both competition and prey defense hypotheses. There was evidence that competition influenced body size distribution across ensembles. Competition also influenced wing and echolocation patterns in ensembles and in functional foraging groups with high species richness or abundance. At the same time, prey defense filters influenced echolocation patterns in two species-poor ensembles. Non-random patterns remained evident even after we removed the influence of body size from wing morphology and echolocation parameters taking phylogeny into account. However, abiotic filters such as geographic distribution ranges of small and large-bodied species, extinction risk, and the physics of flight and sound probably also interacted with biotic filters at local and/or regional scales to influence the community structure of sympatric bats in southern Africa. Future studies should investigate alternative parameters that define bat community structure such as diet and abundance to better determine the influence of competition and prey defences on the structure of insectivorous bat ensembles in southern Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号