首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies on the IF(1) inhibitor protein of the mitochondrial F(1)F(0)-ATPase from molecular biochemistry to possible pathophysiological roles are reviewed. The apparent mechanism of IF(1) inhibition of F(1)F(0)-ATPase activity and the biophysical conditions that influence IF(1) activity are summarized. The amino acid sequences of human, bovine, rat and murine IF(1) are compared and domains and residues implicated in IF(1) function examined. Defining the minimal inhibitory sequence of IF(1) and the role of conserved histidines and conformational changes using peptides or recombinant IF(1) is reviewed. Luft's disease, a mitochondrial myopathy where IF(1) is absent, is described with respect to IF(1) relevance to mitochondrial bioenergetics and clinical observations. The possible pathophysiological role of IF(1) in conserving ATP under conditions where cells experience oxygen deprivation (tumor growth, myocardial ischemia) is evaluated. Finally, studies attempting to correlate IF(1) activity to ATP conservation in myocardial ischemic preconditioning are compared.  相似文献   

3.
THESIS: Within the structurally-confined internal aqueous cavity of the F1-motor of ATP synthase, function results from free energy changes that shift the balance between interfacial charge hydration and interfacial hydrophobic hydration. TRANSITION STATE DESCRIPTION: At the beta-P end of ADP x Mg occurs an inorganic phosphate, P(i). This P(i) resides at the base of a water-filled cleft that functions like an aperture to focus, into an aqueous chamber, a competition for hydration (an apolar-polar repulsion) between charged phosphate and hydrophobic surface of the gamma-rotor. Two means available for the phosphate and the hydrophobic surface to improve their hydration free energies are physically to separate by rotation of the gamma-rotor or chemically to combine P(i) with ADP to form less charged ATP. This proposal derives from calculated changes in Gibbs free energy for hydrophobic association of amino acid side chains and chemical modifications thereof and from experimentally demonstrated water-mediated repulsion between hydrophobic and charged sites that resulted from extensive studies on designed elastic-contractile model proteins.  相似文献   

4.
5.
Studies reported here were undertaken to gain greater molecular insight into the complex structure of mitochondrial ATP synthase (F(0)F(1)) and its relationship to the enzyme's function and motor-related properties. Significantly, these studies, which employed N-terminal sequence, mass spectral, proteolytic, immunological, and functional analyses, led to the following novel findings. First, at the top of F(1) within F(0)F(1), all six N-terminal regions derived from alpha + beta subunits are shielded, indicating that one or more F(0) subunits forms a "cap." Second, at the bottom of F(1) within F(0)F(1), the N-terminal region of the single delta subunit and the C-terminal regions of all three alpha subunits are shielded also by F(0). Third, and in contrast, part of the gamma subunit located at the bottom of F(1) is already shielded in F(1), indicating that there is a preferential propensity for interaction with other F(1) subunits, most likely delta and epsilon. Fourth, and consistent with the first two conclusions above that specific regions at the top and bottom of F(1) are shielded by F(0), further proteolytic shaving of alpha and beta subunits at these locations eliminates the capacity of F(1) to couple a proton gradient to ATP synthesis. Finally, evidence was obtained that the F(0) subunit called "F(6)," unique to animal ATP synthases, is involved in shielding F(1). The significance of the studies reported here, in relation to current views about ATP synthase structure and function in animal mitochondria, is discussed.  相似文献   

6.
F(1)F(0) ATP synthases are known to synthesize ATP by rotary catalysis in the F(1) sector of the enzyme. Proton translocation through the F(0) membrane sector is now proposed to drive rotation of an oligomer of c subunits, which in turn drives rotation of subunit gamma in F(1). The primary emphasis of this review will be on recent work from our laboratory on the structural organization of F(0), which proves to be consistent with the concept of a c(12) oligomeric rotor. From the NMR structure of subunit c and cross-linking studies, we can now suggest a detailed model for the organization of the c(12) oligomer in F(0) and some of the transmembrane interactions with subunits a and b. The structural model indicates that the H(+)-carrying carboxyl of subunit c is located between subunits of the c(12) oligomer and that two c subunits pack in a front-to-back manner to form the proton (cation) binding site. The proton carrying Asp61 side chain is occluded between subunits and access to it, for protonation and deprotonation via alternate entrance and exit half-channels, requires a swiveled opening of the packed c subunits and stepwise association with different transmembrane helices of subunit a. We suggest how some of the structural information can be incorporated into models of rotary movement of the c(12) oligomer during coupled synthesis of ATP in the F(1) portion of the molecule.  相似文献   

7.
In the crystal structure of the mitochondrial F(1)-ATPase, the beta-Thr(163) residue was identified as a ligand to Mg(2+) and the beta-Glu(188) as directly involved in catalysis. We replaced the equivalent beta-Thr(159) of the chromatophore F(0)F(1) ATP synthase of Rhodospirillum rubrum with Ser, Ala, or Val and the Glu(184) with Gln or Lys. The mutant beta subunits were isolated and tested for their capacity to assemble into a beta-less chromatophore F(0)F(1) and restore its lost activities. All of them were found to bind into the beta-less enzyme with the same efficiency as the wild type beta subunit, but only the beta-Thr(159) --> Ser mutant restored the activity of the assembled enzyme. These results indicate that both Thr(159) and Glu(184) are not required for assembly and that Glu(184) is indeed essential for all the membrane-bound chromatophore F(0)F(1) activities. A detailed comparison between the wild type and the beta-Thr(159) --> Ser mutant revealed a rather surprising difference. Although this mutant restored the wild type levels and all specific properties of this F(0)F(1) proton-coupled ATP synthesis as well as Mg- and Mn-dependent ATP hydrolysis, it did not restore at all the proton-decoupled CaATPase activity. This clear difference between the ligands for Mg(2+) and Mn(2+), where threonine can be replaced by serine, and Ca(2+), where only threonine is active, suggests that the beta-subunit catalytic site has different conformational states when occupied by Ca(2+) as compared with Mg(2+). These different states might result in different interactions between the beta and gamma subunits, which are involved in linking F(1) catalysis with F(0) proton-translocation and can thus explain the complete absence of Ca-dependent proton-coupled F(0)F(1) catalytic activity.  相似文献   

8.
Xu L 《Biochimica et biophysica acta》2008,1777(11):1422-1431
The enzyme F(1)-ATPase is a rotary nanomotor in which the central gamma subunit rotates inside the cavity made of alpha(3)beta(3) subunits. The experiments showed that the rotation proceeds in steps of 120 degrees and each 120 degrees step consists of 80 degrees and 40 degrees substeps. Here the Author proposes a stochastic wave mechanics of the F(1)-ATPase motor and combines it with the structure-based kinetics of the F(1)-ATPase to form a chemomechanic coupled model. The model can reproduce quantitatively and explain the experimental observations about the F(1) motor. Using the model, several rate-limited situations about gamma subunit rotation are proposed, the effects of the friction and the load on the substeps are investigated and the chemomechanic coupled time during ATP hydrolysis cycle is determined.  相似文献   

9.
We have previously reported that carbohydrates and polyols protect different enzymes against thermal inactivation and deleterious effects promoted by guanidinium chloride and urea. Here, we show that these osmolytes (carbohydrates, polyols and methylamines) protect mitochondrial F(0)F(1)-ATPase against pressure inactivation. Pressure stability of mitochondrial F(0)F(1)-ATPase complex by osmolytes was studied using preparations of membrane-bound submitochondrial particles depleted or containing inhibitor protein (IP). Hydrostatic pressure in the range from 0.5 to 2.0 kbar causes inactivation of submitochondrial particles depleted of IP (AS particles). However, the osmolytes prevent pressure inactivation of the complex in a dose-dependent manner, remaining up to 80% of hydrolytic activity at the highest osmolyte concentration. Submitochondrial particles containing IP (MgATP-SMP) exhibit low ATPase activity and dissociation of IP increases the hydrolytic activity of the enzyme. MgATP-SMP subjected to pressure (2.2 kbar, for 1 h) and then preincubated at 42 degrees C to undergo activation did not have an increase in activity. However, particles pressurized in the presence of 1.5 M of sucrose or 3.0 M of glucose were protected and after preincubation at 42 degrees C, showed an activation very similarly to those kept at 1 bar. In accordance with the preferential hydration theory, we believe that osmolytes reduce to a minimum the surface of the macromolecule to be hydrated and oppose pressure-induced alterations of the native fold that are driven by hydration forces.  相似文献   

10.
The effect of increased expression or reconstitution of the mitochondrial inhibitor protein (IF1) on the dimer/monomer ratio (D/M) of the rat liver and bovine heart F1F0-ATP synthase was studied. The 2-fold increased expression of IF1 in AS-30D hepatoma mitochondria correlated with a 1.4-fold increase in the D/M ratio of the ATP synthase extracted with digitonin as determined by blue native electrophoresis and averaged densitometry analyses. Removal of IF1 from rat liver or bovine heart submitochondrial particles increased the F1F0-ATPase activity and decreased the D/M ratio of the ATP synthase. Reconstitution of recombinant IF1 into submitochondrial particles devoid of IF1 inhibited the F1F0-ATPase activity by 90% and restored partially the D/M ratio of the whole F1F0 complex as revealed by blue native electrophoresis and subsequent SDS-PAGE or glycerol density gradient centrifugation. Thus, the inhibitor protein promotes or stabilizes the dimeric form of the intact F1F0-ATP synthase. A possible location of the IF1 protein in the dimeric structure of the rat liver F1F0 complex is proposed. According to crystallographic and electron microscopy analyses, dimeric IF1 could bridge the F1-F1 part of the dimeric F1F0-ATP synthase in the inner mitochondrial membrane.  相似文献   

11.
The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.  相似文献   

12.
The gamma subunit of the F1 moiety of the bovine mitochondrial H(+)-ATP synthase is shown to function as a component of the gate. Addition of purified gamma subunit to F0-liposomes inhibits transmembrane proton conduction. This inhibition can be removed by the bifunctional thiol reagent diamide. Immunoblot analysis shows that the diamide effect is likely due to disulphide bridging of the gamma subunit with the PVP protein of the F0 sector.  相似文献   

13.
Since the report by Sternweis and Smith (Sternweis, P. C., and Smith, J. B. (1980) Biochemistry 19, 526-531), the epsilon subunit, an endogenous inhibitor of bacterial F(1)-ATPase, has long been thought not to inhibit activity of the holo-enzyme, F(0)F(1)-ATPase. However, we report here that the epsilon subunit is exerting inhibition in F(0)F(1)-ATPase. We prepared a C-terminal half-truncated epsilon subunit (epsilon(DeltaC)) of the thermophilic Bacillus PS3 F(0)F(1)-ATPase and reconstituted F(1)- and F(0)F(1)-ATPase containing epsilon(DeltaC). Compared with F(1)- and F(0)F(1)-ATPase containing intact epsilon, those containing epsilon(DeltaC) showed uninhibited activity; severalfold higher rate of ATP hydrolysis at low ATP concentration and the start of ATP hydrolysis without an initial lag at high ATP concentration. The F(0)F(1)-ATPase containing epsilon(DeltaC) was capable of ATP-driven H(+) pumping. The time-course of pumping at low ATP concentration was faster than that by the F(0)F(1)-ATPase containing intact epsilon. Thus, the comparison with noninhibitory epsilon(DeltaC) mutant shed light on the inhibitory role of the intact epsilon subunit in F(0)F(1)-ATPase.  相似文献   

14.
15.
The Na(+) F(1)F(0) ATP synthase operon of the anaerobic, acetogenic bacterium Acetobacterium woodii is unique because it encodes two types of c subunits, two identical 8 kDa bacterial F(0)-like c subunits (c(2) and c(3)), with two transmembrane helices, and a 18 kDa eukaryal V(0)-like (c(1)) c subunit, with four transmembrane helices but only one binding site. To determine whether both types of rotor subunits are present in the same c ring, we have isolated and studied the composition of the c ring. High-resolution atomic force microscopy of 2D crystals revealed 11 domains, each corresponding to two transmembrane helices. A projection map derived from electron micrographs, calculated to 5 A resolution, revealed that each c ring contains two concentric, slightly staggered, packed rings, each composed of 11 densities, representing 22 transmembrane helices. The inner and outer diameters of the rings, measured at the density borders, are approximately 17 and 50 A. Mass determination by laser-induced liquid beam ion desorption provided evidence that the c rings contain both types of c subunits. The stoichiometry for c(2)/c(3) : c(1) was 9 : 1. Furthermore, this stoichiometry was independent of the carbon source of the growth medium. These analyses clearly demonstrate, for the first time, an F(0)-V(0) hybrid motor in an ATP synthase.  相似文献   

16.
Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase   总被引:1,自引:0,他引:1  
Rotation of the F(0)F(1) ATP synthase gamma subunit drives each of the three catalytic sites through their reaction pathways. The enzyme completes three cycles and synthesizes or hydrolyzes three ATP for each 360 degrees rotation of the gamma subunit. Mutagenesis studies have yielded considerable information on the roles of interactions between the rotor gamma subunit and the catalytic beta subunits. Amino acid substitutions, such as replacement of the conserved gammaMet-23 by Lys, cause altered interactions between gamma and beta subunits that have dramatic effects on the transition state of the steady state ATP synthesis and hydrolysis reactions. The mutations also perturb transmission of specific conformational information between subunits which is important for efficient conversion of energy between rotation and catalysis, and render the coupling between catalysis and transport inefficient. Amino acid replacements in the transport domain also affect the steady state catalytic transition state indicating that rotation is involved in coupling to transport.  相似文献   

17.
The bioenergetics of IF1 transiently silenced cancer cells has been extensively investigated, but the role of IF1 (the natural inhibitor protein of F1F0-ATPase) in cancer cell metabolism is still uncertain. To shed light on this issue, we established a method to prepare stably IF1-silenced human osteosarcoma clones and explored the bioenergetics of IF1 null cancer cells. We showed that IF1-silenced cells proliferate normally, consume glucose, and release lactate as controls do, and contain a normal steady-state ATP level. However, IF1-silenced cells displayed an enhanced steady-state mitochondrial membrane potential and consistently showed a reduced ADP-stimulated respiration rate. In the parental cells (i.e. control cells containing IF1) the inhibitor protein was found to be associated with the dimeric form of the ATP synthase complex, therefore we propose that the interaction of IF1 with the complex either directly, by increasing the catalytic activity of the enzyme, or indirectly, by improving the structure of mitochondrial cristae, can increase the oxidative phosphorylation rate in osteosarcoma cells grown under normoxic conditions.  相似文献   

18.
In this study a series of N- and/or C-terminal truncations of the cytoplasmic domain of the b subunit of the Escherichia coli F(1)F(0) ATP synthase were tested for their ability to form dimers using sedimentation equilibrium ultracentrifugation. The deletion of residues between positions 53 and 122 resulted in a strongly decreased tendency to form dimers, whereas all the polypeptides that included that sequence exhibited high levels of dimer formation. b dimers existed in a reversible monomer-dimer equilibrium and when mixed with other b truncations formed heterodimers efficiently, provided both constructs included the 53-122 sequence. Sedimentation velocity and (15)N NMR relaxation measurements indicated that the dimerization region is highly extended in solution, consistent with an elongated second stalk structure. A cysteine introduced at position 105 was found to readily form intersubunit disulfides, whereas other single cysteines at positions 103-110 failed to form disulfides either with the identical mutant or when mixed with the other 103-110 cysteine mutants. These studies establish that the b subunit dimer depends on interactions that occur between residues in the 53-122 sequence and that the two subunits are oriented in a highly specific manner at the dimer interface.  相似文献   

19.
The physiological role of F(1)F(0)-ATPase inhibition in ischemia may be to retard ATP depletion although views of the significance of IF(1) are at variance. We corroborate here a method for measuring the ex vivo activity of F(1)F(0)-ATPase in perfused rat heart and show that observation of ischemic F(1)F(0)-ATPase inhibition in rat heart is critically dependent on the sample preparation and assay conditions, and that the methods can be applied to assay the ischemic and reperfused human heart during coronary by-pass surgery. A 5-min period of ischemia inhibited F(1)F(0)-ATPase by 20% in both rat and human myocardium. After a 15-min reperfusion a subsequent 5-min period of ischemia doubled the inhibition in the rat heart but this potentiation was lost after 120 min of reperfusion. Experiments with isolated rat heart mitochondria showed that ATP hydrolysis is required for effective inhibition by uncoupling. The concentration of oligomycin for 50% inhibition (I(50)) for oxygen consumption was five times higher than its I(50) for F(1)F(0)-ATPase. Because of the different control strengths of F(1)F(0)-ATPase in oxidative phosphorylation and ATP hydrolysis an inhibition of the F(1)F(0)-ATPase activity in ischemia with the resultant ATP-sparing has an advantage even in an ischemia/reperfusion situation.  相似文献   

20.
In Escherichia coli F(1)F(0) ATP synthase, the two b subunits dimerize forming the peripheral second stalk linking the membrane F(0) sector to F(1). Previously, we have demonstrated that the enzyme could accommodate relatively large deletions in the b subunits while retaining function (Sorgen, P. L., Caviston, T. L., Perry, R. C., and Cain, B. D. (1998) J. Biol. Chem. 273, 27873-27878). The manipulations of b subunit length have been extended by construction of insertion mutations into the uncF(b) gene adding amino acids to the second stalk. Mutants with insertions of seven amino acids were essentially identical to wild type strains, and mutants with insertions of up to 14 amino acids retained biologically significant levels of activity. Membranes prepared from these strains had readily detectable levels of F(1)F(0)-ATPase activity and proton pumping activity. However, the larger insertions resulted in decreasing levels of activity, and immunoblot analysis indicated that these reductions in activity correlated with reduced levels of b subunit in the membranes. Addition of 18 amino acids was sufficient to result in the loss of F(1)F(0) ATP synthase function. Assuming the predicted alpha-helical structure for this area of the b subunit, the 14-amino acid insertion would result in the addition of enough material to lengthen the b subunit by as much as 20 A. The results of both insertion and deletion experiments support a model in which the second stalk is a flexible feature of the enzyme rather than a rigid rod-like structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号