首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-bifunctional enzyme (Ehhadh) is part of the classical peroxisomal fatty acid β-oxidation pathway. This pathway is highly inducible via peroxisome proliferator-activated receptor α (PPARα) activation. However, no specific substrates or functions for Ehhadh are known, and Ehhadh knockout (KO) mice display no appreciable changes in lipid metabolism. To investigate Ehhadh functions, we used a bioinformatics approach and found that Ehhadh expression covaries with genes involved in the tricarboxylic acid cycle and in mitochondrial and peroxisomal fatty acid oxidation. Based on these findings and the regulation of Ehhadh's expression by PPARα, we hypothesized that the phenotype of Ehhadh KO mice would become apparent after fasting. Ehhadh mice tolerated fasting well but displayed a marked deficiency in the fasting-induced production of the medium-chain dicarboxylic acids adipic and suberic acid and of the carnitine esters thereof. The decreased levels of adipic and suberic acid were not due to a deficient induction of ω-oxidation upon fasting, as Cyp4a10 protein levels increased in wild-type and Ehhadh KO mice.We conclude that Ehhadh is indispensable for the production of medium-chain dicarboxylic acids, providing an explanation for the coordinated induction of mitochondrial and peroxisomal oxidative pathways during fasting.  相似文献   

2.
The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver disease from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid β-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid β-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage.  相似文献   

3.
4.
Mitochondrial fatty acids β-oxidation disorder (FAOD) has become popular with development of tandem mass spectrometry (MS/MS) and enzymatic evaluation techniques. FAOD occasionally causes acute encephalopathy or even sudden death in children. On the other hand, hyperpyrexia may also trigger severe seizures or encephalopathy, which might be caused by the defects of fatty acid β-oxidation (FAO). We investigated the effect of heat stress on FAO to determine the relationship between serious febrile episodes and defect in β-oxidation of fatty acid in children. Fibroblasts from healthy control and children with various FAODs, were cultured in the medium loaded with unlabelled palmitic acid for 96 h at 37 °C or 41 °C. Acylcarnitine (AC) profiles in the medium were determined by MS/MS, and specific ratios of ACs were calculated. Under heat stress (at 41 °C), long-chain ACs (C12, C14, or C16) were increased, while medium-chain ACs (C6, C8, or C10) were decreased in cells with carnitine palmitoyl transferase II deficiency, very-long-chain acyl-CoA dehydrogenase deficiency and mitochondrial trifunctional protein deficiency, whereas AC species from short-chain (C4) to long-chain (C16) were barely affected in medium-chain acyl-CoA dehydrogenase and control. While long-chain ACs (C12–C16) were significantly elevated, short to medium-chain ACs (C4–C10) were reduced in multiple acyl-CoA dehydrogenase deficiency. These data suggest that patients with long-chain FAODs may be more susceptible to heat stress compared to medium-chain FAOD or healthy control and that serious febrile episodes may deteriorate long-chain FAO in patients with long-chain FAODs.  相似文献   

5.
6.
Peroxisome deficiency in liver causes hepatosteatosis both in patients and in mice. Here, we studied the mechanisms that contribute to this lipid accumulation and to activation of peroxisome proliferator activated receptor α (PPARα) by using liver-specific Pex5−/− mice (L-Pex5−/− mice). Surprisingly, steatosis was accompanied both by increased mitochondrial β-oxidation capacity, confirming previous observations, and by impaired de novo lipid synthesis mediated by reduced expression of sterol regulatory element binding protein 1c and its targets. As a consequence, when challenged with a high fat diet, L-Pex5−/− mice were protected from adiposity. Hepatic fatty acid uptake was strongly increased whereas the expression of apolipoproteins and the lipoprotein assembly factor microsomal triglyceride transfer protein were markedly reduced resulting in reduced secretion of very low density lipoproteins. Most of these changes seemed to be orchestrated by the endogenous activation of PPARα, challenging the assumption that PPARα activation in hepatocytes requires fatty acid synthase dependent de novo fatty acid synthesis. Expression of cholesterol synthesizing enzymes and cholesterol levels were not affected in peroxisome deficient liver. In conclusion, increased fatty acid uptake driven by endogenous PPARα activation and reduced fatty acid secretion cause hepatosteatosis in peroxisome deficient livers.  相似文献   

7.
Isohumulones derived from hops are the major bitter compounds in beer. It was recently reported that isohumulones activated peroxisome proliferator-activated receptors (PPARs) α and γ in vitro and modulated glucose and lipid metabolism in vivo. In this study, we examined the effects of isomerized hop extract (IHE) primarily containing isohumulones in C57BL/6N male mice and found that such treatment increased their liver weight and reduced their plasma triglyceride and free fatty acid levels. Microarray analysis and quantitative real time PCR (QPCR) showed that IHE dose-dependently upregulated the expression of a battery of hepatic genes that are involved in microsomal ω-oxidation and peroxisomal and mitochondrial β-oxidation. These effects were common in both genders and very similar to those found with the PPARα agonist, fenofibrate (FF). Moreover, these effects were not found in PPARα-deficient mice. Thus, our results strongly suggest that IHE intake upregulates the expression of key genes that are involved in hepatic fatty acid oxidation, and that it ameliorates the blood lipid profile by activating PPARα.  相似文献   

8.
Hepatopathy and hepatomegaly as consequences of prolonged fasting or illnesses are typical clinical features of very long chain acyl-CoA dehydrogenase (VLCACD) deficiency, the most common long-chain fatty acid β-oxidation defect. Supplementation with medium-chain triglycerides (MCTs) is an important treatment measure in these defects, in order to supply sufficient energy. Little is known about the pathogenetic mechanisms leading to hepatopathy. Here, we investigated the effects of prolonged fasting and an MCT diet on liver function. Wild-type (WT) and VLCAD knockout mice were fed with either a regular long-chain triglyceride diet or an MCT diet for 5 weeks. In both groups, we determined liver and blood lipid contents under nonfasting conditions and after 24 h of fasting. Expression of genes regulating peroxisomal and microsomal oxidation pathways was analyzed by RT-PCR. In addition, glutathione peroxidase and catalase activities, as well as thiobarbituric acid reactive substances, were examined. In VLCAD knockout mice fed with a long-chain triglyceride diet, fasting is associated with excessive accumulation of liver lipids, resulting in hepatopathy and strong upregulation of peroxisomal and microsomal oxidation pathways as well as antioxidant enzyme activities and thiobarbituric acid reactive substances. These effects were even evident in nonfasted mice fed with an MCT diet, and were particularly pronounced in fasted mice fed with an MCT diet. This study strongly suggests that liver damage in fatty acid oxidation defects is attributable to oxidative stress and generation of reactive oxygen species as a result of significant fat accumulation. An MCT diet does not prevent hepatic damage during catabolism and metabolic derangement.  相似文献   

9.
《Cellular signalling》2014,26(2):295-305
Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.  相似文献   

10.
Fatty acid β-oxidation may occur in both mitochondria and peroxisomes. While peroxisomes oxidize specific carboxylic acids such as very long-chain fatty acids, branched-chain fatty acids, bile acids, and fatty dicarboxylic acids, mitochondria oxidize long-, medium-, and short-chain fatty acids. Oxidation of long-chain substrates requires the carnitine shuttle for mitochondrial access but medium-chain fatty acid oxidation is generally considered carnitine-independent. Using control and carnitine palmitoyltransferase 2 (CPT2)- and carnitine/acylcarnitine translocase (CACT)-deficient human fibroblasts, we investigated the oxidation of lauric acid (C12:0). Measurement of the acylcarnitine profile in the extracellular medium revealed significantly elevated levels of extracellular C10- and C12-carnitine in CPT2- and CACT-deficient fibroblasts. The accumulation of C12-carnitine indicates that lauric acid also uses the carnitine shuttle to access mitochondria. Moreover, the accumulation of extracellular C10-carnitine in CPT2- and CACT-deficient cells suggests an extramitochondrial pathway for the oxidation of lauric acid. Indeed, in the absence of peroxisomes C10-carnitine is not produced, proving that this intermediate is a product of peroxisomal β-oxidation. In conclusion, when the carnitine shuttle is impaired lauric acid is partly oxidized in peroxisomes. This peroxisomal oxidation could be a compensatory mechanism to metabolize straight medium- and long-chain fatty acids, especially in cases of mitochondrial fatty acid β-oxidation deficiency or overload.  相似文献   

11.
12.
Studies have shown linoleate could not only promote cell viability but also affect lipid metabolism in mammals. However, to what degree these effects are mediated by steatosis in goose primary hepatocytes is unknown. In this study, the effect of linoleate on the lipid metabolic homeostasis pathway was determined. We measured the mRNA levels of genes involved in triglyceride synthesis, lipid deposition, β-oxidation, and assembly and secretion of VLDL-TGs in goose (Anser cygnoides) primary hepatocytes. Linoleate significantly increased goose hepatocyte viability, and linoleate at 0.125 mM, 0.25 mM, 0.5 mM and 1.0 mM all showed a significant effect on TG accumulation. However, with increasing linoleate concentrations, the extracellular TG concentration and extracellular VLDL gradually decreased. DGAT1, DGAT2, PPARα, PPARγ, FoxO1, MTP, PLIN and CPT-1 mRNA was detected by real-time PCR. With increasing linoleate concentrations, the changes in DGAT1, DGAT2, PPARα and CPT-1 gene expression, which regulates hepatic TG synthesis and fatty acid oxidation, first increased and then decreased. Additionally, FoxO1 and MTP gene expression was reduced with increasing linoleate concentrations, and the change in PLIN gene expression was increased at all concentrations, similar to the regulation of intracellular TG accumulation. In conclusion, linoleate regulated TG accumulation and increased hepatocyte viability. The data suggest that linoleate does promote goose hepatocyte viability and steatosis, which may up-regulate TG synthesis-relevant gene expression, suppress assembly and secretion of VLDL-TGs, and increase fatty acid oxidation properly to function of goose primary hepatocytes.  相似文献   

13.
The enzyme carnitine palmitoyltransferase 1 (CPT1), which is anchored in the outer mitochondrial membrane (OMM), controls the rate-limiting step in fatty acid β-oxidation in mammalian tissues. It is inhibited by malonyl-CoA, the first intermediate of fatty acid synthesis, and it responds to OMM curvature and lipid characteristics, which reflect long term nutrient/hormone availability. Here, we show that the N-terminal regulatory domain (N) of CPT1A can adopt two complex amphiphilic structural states, termed Nα and Nβ, that interchange in a switch-like manner in response to offered binding surface curvature. Structure-based site-directed mutageneses of native CPT1A suggest Nα to be inhibitory and Nβ to be noninhibitory, with the relative Nα/Nβ ratio setting the prevalent malonyl-CoA sensitivity of the enzyme. Based on the amphiphilic nature of N and molecular modeling, we propose malonyl-CoA sensitivity to be coupled to the properties of the OMM by Nα-OMM associations that alter the Nα/Nβ ratio. For enzymes residing at the membrane-water interface, this constitutes an integrative regulatory mechanism of exceptional sophistication.  相似文献   

14.
Li H  Song Y  Zhang LJ  Gu Y  Li FF  Pan SY  Jiang LN  Liu F  Ye J  Li Q 《PloS one》2012,7(6):e36712
Lipid storage droplet protein 5 (LSDP5) is a lipid droplet-associated protein of the PAT (perilipin, adipophilin, and TIP47) family that is expressed in the liver in a peroxisome proliferator-activated receptor alpha (PPARα)-dependent manner; however, its exact function has not been elucidated. We noticed that LSDP5 was localized to the surface of lipid droplets in hepatocytes. Overexpression of LSDP5 enhanced lipid accumulation in the hepatic cell line AML12 and in primary hepatocytes. Knock-down of LSDP5 significantly decreased the triglyceride content of lipid droplets, stimulated lipolysis, and modestly increased the mitochondrial content and level of fatty-acid β-oxidation in the mitochondria. The expression of PPARα was increased in LSDP5-deficient cells and required for the increase in the level of fatty acid β-oxidation in LSDP5-deficient cells. Using serial deletions of LSDP5, we determined that the lipid droplet-targeting domain and the domain directing lipid droplet clustering overlapped and were localized to the 188 amino acid residues at the N-terminus of LSDP5. Our findings suggest that LSDP5, a novel lipid droplet protein, may contribute to triglyceride accumulation by negatively regulating lipolysis and fatty acid oxidation in hepatocytes.  相似文献   

15.
除线粒体外,过氧化物酶体也是真核细胞脂肪酸β氧化分解的重要部位.过氧化物酶体β氧化过程包括氧化、加水、脱氢和硫解4步反应,主要参与极长链、支链脂肪酸等的分解.近年关于过氧化物酶体β氧化的研究活跃,在代谢途径及功能等方面有了新的认识,尤其在对相关代谢酶的研究中取得了较大进展.本文就过氧化物酶体β氧化相关进展作一综述.  相似文献   

16.
17.
1. During fatty acid oxidation by rat liver mitochondria, the rate of β-oxidation is dependent on the relative amounts of substrate and mitochondrial protein, on the energy state of the mitochondria, on the chain length and the number of double bonds of the fatty acid and on the concentration of various compounds in the reaction medium (l-carnitine, CoASH, hexokinase, albumin).2. The rate of β-oxidation of long-chain fatty acids decreases when the ratio of albumin over fatty acid is increased. This effect is most marked in the absence of added carnitine.3. Addition of excess hexokinase decreases the rate of β-oxidation in the presence of added carnitine.4. Maximal rates of β-oxidation are observed with octanoate and decanoate (40–60 nmoles acetyl-CoA/min per mg mitochondrial protein at 25 °C).5. Odd-numbered fatty acids are oxidized at a much lower rate than the even-numbered homologues. In a low-energy state propionyl-CoA accumulates; in a high-energy state in the presence of bicarbonate, Krebs-cycle intermediates accumulate.6. l-Carnitine enhances the rate of β-oxidation of all fatty acids except butyrate. The stimulatory effect is most pronounced with odd-numbered and with long-chain fatty acids.7. In the absence of added carnitine the rate of β-oxidation of long-chain fatty acids decreases with the chain length and increases with the number of double bonds. It is suggested that the solubility of the long-chain fatty acids in the aqueous medium is the rate-limiting factor under these conditions.8. In the presence of carnitine and albumin, palmitate, oleate, linoleate and linolenate are all oxidized at about the same rate (25–30 nmoles/min per mg protein at 25 °C).9. Propionyl-CoA is not formed as an intermediate during oxidation of unsaturated fatty acids.  相似文献   

18.
Obesity is associated with hepatic steatosis, partially due to increased lipogenesis and decreased fatty acid β-oxidation in the liver; however, the underlying mechanism of abnormal lipid metabolism is not fully understood. We reported previously that obesity is associated with LCN13 (lipocalin 13) deficiency. LCN13 is a lipocalin family member involved in glucose metabolism, and LCN13 deficiency appears to contribute to hyperglycemia in obese mice. Here, we show that LCN13 is also an important regulator of lipogenesis and β-oxidation in the liver. In primary hepatocytes, recombinant LCN13 directly suppressed lipogenesis and increased fatty acid β-oxidation, whereas neutralization of endogenous LCN13 had an opposite effect. Transgenic overexpression of LCN13 protected against hepatic steatosis in mice with either dietary or genetic (ob/ob) obesity. LCN13 transgenic overexpression also improved hyperglycemia, glucose intolerance, and insulin resistance in ob/ob mice. Short-term LCN13 overexpression via an adenovirus-mediated gene transfer similarly attenuated hepatic steatosis in db/db mice. LCN13 inhibited the expression of important lipogenic genes and stimulated the genes that promote β-oxidation. These results suggest that LCN13 decreases liver lipid levels by both inhibiting hepatic lipogenesis and stimulating β-oxidation. LCN13 deficiency is likely to contribute to fatty liver disease in obese mice.  相似文献   

19.
20.
We previously demonstrated that the thyroid hormone, T(3), acutely stimulates mitochondrial metabolism in a thyroid hormone receptor (TR)-dependent manner. T(3) has also recently been shown to stimulate mitochondrial fatty acid oxidation (FAO). Here we report that TR-dependent stimulation of metabolism is mediated by the mitochondrial trifunctional protein (MTP), the enzyme responsible for long-chain FAO. Stimulation of FAO was significant in cells that expressed a nonnuclear amino terminus shortened TR isoform (sTR(43)) but not in adult fibroblasts cultured from mice deficient in both TRα and TRβ isoforms (TRα(-/-)β(-/-)). Mouse embryonic fibroblasts deficient in MTP (MTP(-/-)) did not support T(3)-stimulated FAO. Inhibition of fatty-acid trafficking into mitochondria using the AMP-activated protein kinase inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyrrazolo[1,5-a]-pyrimidine (compound C) or the carnitine palmitoyltransferase 1 inhibitor etomoxir prevented T(3)-stimulated FAO. However, T(3) treatment could increase FAO when AMP-activated protein kinase was maximally activated, indicating an alternate mechanism of T(3)-stimulated FAO exists, even when trafficking is presumably high. MTPα protein levels and higher molecular weight complexes of MTP subunits were increased by T(3) treatment. We suggest that T(3)-induced increases in mitochondrial metabolism are at least in part mediated by a T(3)-shortened TR isoform-dependent stabilization of the MTP complex, which appears to lower MTP subunit turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号