首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Measurement of energy balance during voluntary overeating in rats unequivocally establishes the quantitative importance of diet-induced thermogenesis in energy balance. Like cold-induced thermogenesis, this form of heat production involves changes in the activity of the sympathetic nervous system and brown adipose tissue which suggest that this tissue may determine metabolic efficiency and resistance to obesity.  相似文献   

4.
Adipocytes are embedded in a unique extracellular matrix whose main function is to provide mechanical support, in addition to participating in a variety of signaling events. During adipose tissue expansion, the extracellular matrix requires remodeling to accommodate adipocyte growth. Here, we demonstrate a general upregulation of several extracellular matrix components in adipose tissue in the diabetic state, therefore implicating “adipose tissue fibrosis” as a hallmark of metabolically challenged adipocytes. Collagen VI is a highly enriched extracellular matrix component of adipose tissue. The absence of collagen VI results in the uninhibited expansion of individual adipocytes and is paradoxically associated with substantial improvements in whole-body energy homeostasis, both with high-fat diet exposure and in the ob/ob background. Collectively, our data suggest that weakening the extracellular scaffold of adipocytes enables their stress-free expansion during states of positive energy balance, which is consequently associated with an improved inflammatory profile. Therefore, the disproportionate accumulation of extracellular matrix components in adipose tissue may not be merely an epiphenomenon of metabolically challenging conditions but may also directly contribute to a failure to expand adipose tissue mass during states of excess caloric intake.Adipose tissue is a key regulator of systemic energy homeostasis. The physiological state of adipose tissue is driven by cell-autonomous processes within the adipocyte. In addition to this, the adipocyte itself is subject to major modifications by other cell types that infiltrate adipose tissue, such as macrophages and vascular cells; moreover, adipocytes can be markedly influenced by several hormones and cytokines that circulate systemically.Although all these cellular interactions have been the subject of extensive studies in numerous laboratories, the extracellular matrix of adipose tissue has received limited attention to date, despite evidence suggesting that it is a functionally relevant constituent of adipose tissue physiology.It is currently unknown what consequential effects metabolic stress exerts on the extracellular matrix and vice versa. In other words, what is the impact of dysregulation of the extracellular constituents of adipose tissue on the systemic metabolic state? Here, we approach this subject from two different perspectives. We first assessed the overall level of extracellular matrix components under different metabolic conditions and established that the extracellular constituents are globally upregulated during metabolically challenging conditions. We then selected a specific member of the collagen family, collagen VI (exhibiting predominant expression in adipose tissue), and utilized a genetic model of collagen VI disruption to investigate the effects of disruption of the extracellular matrix of adipose tissue. Remarkably, our studies demonstrated that such weakening of adipose tissue extracellular matrix results in considerable improvement of the metabolic phenotype in the context of both a high-fat diet and a challenge with the ob/ob mutation.Our observations highlight the extracellular matrix of adipose tissue as an important and novel site of modulation of systemic metabolism. Obese adipose tissue displays hallmarks similar to other fibrotic tissues, such as the liver; this suggests that specific constituents of this normally rather rigid extracellular matrix environment may provide possible targets for pharmacological intervention for the treatment of metabolic disorders.  相似文献   

5.
肥胖和超重的患病率继续上升,发病率和死亡率日益增长,是造成高血压、高脂血症、动脉粥样硬化、2型糖尿病等疾病的关键因素之一。目前,针对肥胖的研究已经深入到分子层面。结果提示,肥胖状态下内脏脂肪组织中的低度、慢性炎症反应被认为是其导致胰岛素抵抗的重要病理生理机制。这篇评论的目的是总结目前先天性免疫细胞和适应性免疫细胞在脂肪组织炎症和免疫细胞失调在肥胖和胰岛素抵抗中的作用,认识免疫炎症与代谢之间关系可能为临床治疗肥胖提供靶向。  相似文献   

6.
Abdominal visceral tissue (VAT) and subcutaneous adipose tissue (SAT), comprised of superficial‐SAT (sSAT) and deep‐SAT (dSAT), are metabolically distinct. The antidiabetic agents thiazolidinediones (TZDs), in addition to their insulin‐sensitizing effects, redistribute SAT suggesting that TZD action involves adipose tissue depot‐specific regulation. We investigated the expression of proteins key to adipocyte metabolism on differentiated first passage (P1) preadipocytes treated with rosiglitazone, to establish a role for the diverse depots of abdominal adipose tissue in the insulin‐sensitizing effects of TZDs. Adipocytes and preadipocytes were isolated from sSAT, dSAT, and VAT samples obtained from eight normal subjects. Preadipocytes (P1) left untreated (U) or treated with a classic differentiation cocktail (DI) including rosiglitazone (DIR) for 9 days were evaluated for strata‐specific differences in differentiation including peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) and lipoprotein lipase (LPL) expression, insulin sensitivity via adiponectin and glucose transport‐4 (GLUT4), glucocorticoid metabolism with 11β‐hydroxysteroid dehydrogenase type‐1 (11βHSD1), and alterations in the adipokine leptin. While depot‐specific differences were absent with the classic differentiation cocktail, with rosiglitazone sSAT had the most potent response followed by dSAT, whereas VAT was resistant to differentiation. With rosiglitazone, universal strata effects were observed for PPAR‐γ, LPL, and leptin, with VAT in all cases expressing significantly lower basal expression levels. Clear dSAT‐specific changes were observed with decreased intracellular GLUT4. Specific sSAT alterations included decreased 11βHSD1 whereas secreted adiponectin was potently upregulated in sSAT with respect to dSAT and VAT. Overall, the subcompartments of SAT, sSAT, and dSAT, appear to participate in the metabolic changes that arise with rosiglitazone administration.  相似文献   

7.
The early events that initiate inflammation in the adipose tissue during obesity are not well defined. It is unclear whether the recruitment of CD8 T cells to the adipose tissue during onset of obesity occurs through antigen-dependent or -independent processes. We have previously shown that interaction between NKG2D (natural-killer group 2, member D) and its ligand Rae-1ε is sufficient to recruit cytotoxic T lymphocytes to the pancreas and induce insulitis. Here, we tested whether NKG2D–NKG2D ligand interaction is also involved in obesity-induced adipose tissue inflammation and insulin resistance. We observed a significant induction of NKG2D ligand expression in the adipose tissue of obese mice, especially during the early stages of obesity. However, mice lacking NKG2D developed similar levels of insulin resistance and adipose tissue inflammation compared to control mice when placed on a high-fat diet. Moreover, overexpression of Rae-1ε in the adipose tissue did not increase immune cell infiltration to the adipose tissue either in the setting of a normal or high-fat diet. These results indicate that, unlike in the pancreas, NKG2D–NKG2D ligand interaction does not play a critical role in obesity-induced inflammation in the adipose tissue.  相似文献   

8.
9.
非生物胁迫是导致全球作物减产的重要因素,在植物应对非生物胁迫的生命反应中,编码蛋白的基因起到了非常重要的作用。随着研究的不断深入,发现microRNA(miRNA)在植物抗非生物胁迫中发挥着非常重要的作用。microRNA是一类非编码的RNA,长度约22~24 nt,通过作用于靶基因的mRNA进行调控。miRNA可以在植物应对多种非生物胁迫中发挥作用,如过氧化、营养缺乏、盐碱、干旱及其他机械胁迫等。我们基于目前的研究进展,着重介绍了miRNA的生物合成、作用机制,及其在多种非生物胁迫中的作用。  相似文献   

10.
Maternal obesity and gestational diabetes mellitus (GDM) are two increasingly common and important obstetric complications that are associated with severe long-term health risks to mothers and babies. IL-1β, which is increased in obese and GDM pregnancies, plays an important role in the pathophysiology of these two pregnancy complications. In non-pregnant tissues, endoplasmic (ER) stress is increased in diabetes and can induce IL-1β via inflammasome activation. The aim of this study was to determine whether ER stress is increased in omental adipose tissue of women with GDM, and if ER stress can also upregulate inflammasome-dependent secretion of IL-1β. ER stress markers IRE1α, GRP78 and XBP-1s were significantly increased in adipose tissue of obese compared to lean pregnant women. ER stress was also increased in adipose tissue of women with GDM compared to BMI-matched normal glucose tolerant (NGT) women. Thapsigargin, an ER stress activator, induced upregulated secretion of mature IL-1α and IL-1β in human omental adipose tissue explants primed with bacterial endotoxin LPS, the viral dsRNA analogue poly(I:C) or the pro-inflammatory cytokine TNF-α. Inhibition of capase-1 with Ac-YVAD-CHO resulted in decreased IL-1α and IL-1β secretion, whereas inhibition of pannexin-1 with carbenoxolone suppressed IL-1β secretion only. Treatment with anti-diabetic drugs metformin and glibenclamide also reduced IL-1α and IL-1β secretion in infection and cytokine-primed adipose tissue. In conclusion, this study has demonstrated ER stress to activate the inflammasome in pregnant adipose tissue. Therefore, increased ER stress may contribute towards the pathophysiology of obesity in pregnancy and GDM.  相似文献   

11.
12.
肥胖已经成为威胁人类健康的全球性问题,棕色脂肪(Brown adipose tissue,BAT)及米色脂肪因其能够通过产热作用增加能量消耗这一特性,已成为一种备受关注的潜在肥胖治疗方法。近年来的研究发现M2型巨噬细胞(Alternatively activated macrophages,M2 type)能够促进BAT产热和白色脂肪(White adipose tissue,WAT)的棕色化(即米色脂肪的形成过程),但随后的一些研究却得到了相反的结论。到目前为止,M2型巨噬细胞是否参与促进WAT的棕色化过程仍是一个备受争议的话题。主要对M2型巨噬细胞、II型固有淋巴细胞(Type 2 Innate Lymphoid Cells,ILC2s)和嗜酸性粒细胞(Eosinophils)对BAT产热和WAT的棕色化的促进作用,以及M2型巨噬细胞不参与/抑制WAT棕色化这两个方面的研究状况做一综述。  相似文献   

13.
14.
Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vitro analysis using cultured cell revealed that SMS1 depletion reduced fatty acid uptake. Proteins extracted from WAT of mutant mice were severely modified by oxidative stress, and up-regulation of mRNAs related to apoptosis, redox adjustment, mitochondrial stress response and mitochondrial biogenesis was observed. ATP content of WAT was reduced in SMS1 null mice. Blue native gel analysis indicated that accumulation of mitochondrial respiratory chain complexes was reduced. These results suggest that WAT of SMS1 null mice is severely damaged by oxidative stress and barely functional. Indeed, mutant mice treated with the anti-oxidant N-acetyl cysteine (NAC) showed partial recovery of lipodystrophic phenotypes together with normalized plasma triglyceride concentrations. Altogether, our data suggest that SMS1 is crucial to control oxidative stress in order to maintain WAT function.  相似文献   

15.
16.
Glucocorticoids have been shown to be essential for the excessive fat deposition and development of obesity in several animal models. This study was performed to characterize the role of glucocorticoids in the developmental regulation of adipose tissue metabolism. On day 70 of gestation, pig fetuses were hypophysectomized by micro-cauterization. Hypophysectomized fetuses were implanted subcutaneously with hydrocortisone pellets or received no hormone replacement. Fetuses were removed by laparotomy on day 90 of gestation. Additional fetuses were hypophysectomized on day 70, implanted with hydrocortisone pellets on day 90 and removed on day 105 of gestation. Several intact fetuses were also implanted subcutaneously with hydrocortisone pellets during this later gestational period. Serum cortisol concentrations were reduced in hypophysectomized pigs at both fetal ages and were restored to intact levels by hydrocortisone treatment. Hydrocortisone supplementation enhanced lipolytic response to isoproterenol in intact fetuses but failed to restore lipolytic response to isoproterenol in hypophysectomized animals at either fetal age. Hydrocortisone induced a slight increase in lipogenesis in hypophysectomized fetuses when administered from 70 to 90 days of gestation and a more dramatic increase when administered from days 90 to 105 of gestation. However, hydrocortisone had no effect on basal or insulin stimulated lipogenesis in intact fetuses when administered from days 90 to 105 of gestation. These results indicate that hydrocortisone may have a primary influence on adipose tissue metabolism during late fetal development only in the absence of inhibition from counterregulatory hormones of pituitary origin.  相似文献   

17.

Background

Perturbations in abdominal fat secreted adipokines play a key role in metabolic syndrome. This process is further altered during the aging process, probably due to alterations in the preadipocytes (aka. stromal vascular fraction cells-SVF cells or adipose derived stem cells-ASCs) composition and/or function. Since microRNAs regulate genes involved both in development and aging processes, we hypothesized that the impaired adipose function with aging is due to altered microRNA regulation of adipogenic pathways in SVF cells.

Methodology and Principal Findings

Alterations in mRNA and proteins associated with adipogenic differentiation (ERK5 and PPARg) but not osteogenic (RUNX2) pathways were observed in SVF cells isolated from visceral adipose tissue with aging (6 to 30 mo) in female Fischer 344 x Brown Norway Hybrid (FBN) rats. The impaired differentiation capacity with aging correlated with altered levels of miRNAs involved in adipocyte differentiation (miRNA-143) and osteogenic pathways (miRNA-204). Gain and loss of function studies using premir or antagomir-143 validated the age associated adipocyte dysfunction.

Conclusions and Significance

Our studies for the first time indicate a role for miRNA mediated regulation of SVF cells with aging. This discovery is important in the light of the findings that dysfunctional adipose derived stem cells contribute to age related chronic diseases.  相似文献   

18.
19.
Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.  相似文献   

20.
Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during sustained periods of physical inactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号