首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The larvae of scarab beetles, known as “white grubs” and belonging to the genera Phyllophaga and Anomala (Coleoptera: Scarabaeidae), are regarded as soil-dwelling pests in Mexico. During a survey conducted to find pathogenic bacteria with the potential to control scarab larvae, a native Serratia sp. (strain Mor4.1) was isolated from a dead third-instar Phyllophaga blanchardi larva collected from a cornfield in Tres Marías, Morelos, Mexico. Oral bioassays using healthy P. blanchardi larvae fed with the Mor4.1 isolate showed that this strain was able to cause an antifeeding effect and a significant loss of weight. Mortality was observed for P. blanchardi, P. trichodes, and P. obsoleta in a multidose experiment. The Mor4.1 isolate also caused 100% mortality 24 h after intracoelomic inoculation of the larvae of P. blanchardi, P. ravida, Anomala donovani and the lepidopteran insect Manduca sexta. Oral and injection bioassays were performed with concentrated culture broths of the Mor4.1 isolate to search for disease symptoms and mortality caused by extracellular proteins. The results have shown that Mor4.1 broths produce significant antifeeding effects and mortality. Mor4.1 broths treated with proteinase K lost the ability to cause disease symptoms and mortality, in both the oral and the injection bioassays, suggesting the involvement of toxic proteins in the disease. The Mor4.1 isolate was identified as a putative Serratia entomophila Mor4.1 strain based on numerical taxonomy and phylogenetic analyses done with the 16S rRNA gene sequence. The potential of S. entomophila Mor4.1 and its toxins to be used in an integrated pest management program is discussed.  相似文献   

2.
Endotoxin [Lipopolysaccharide (LPS)/Lipooligosaccharide (LOS)] is an important virulence determinant in gram negative bacteria. While the genetic basis of endotoxin production and its role in disease in the pathogenic Neisseria has been extensively studied, little research has focused on the genetic basis of LOS biosynthesis in commensal Neisseria. We determined the genomic sequences of a variety of commensal Neisseria strains, and compared these sequences, along with other genomic sequences available from various sequencing centers from commensal and pathogenic strains, to identify genes involved in LOS biosynthesis. This allowed us to make structural predictions as to differences in LOS seen between commensal and pathogenic strains. We determined that all neisserial strains possess a conserved set of genes needed to make a common 3-Deoxy-D-manno-octulosonic acid -heptose core structure. However, significant genomic differences in glycosyl transferase genes support the published literature indicating compositional differences in the terminal oligosaccharides. This was most pronounced in commensal strains that were distally related to the gonococcus and meningococcus. These strains possessed a homolog of heptosyltransferase III, suggesting that they differ from the pathogenic strains by the presence a third heptose. Furthermore, most commensal strains possess homologs of genes needed to synthesize lipopolysaccharide (LPS). N. cinerea, a commensal species that is highly related to the gonococcus has lost the ability to make sialyltransferase. Overall genomic comparisons of various neisserial strains indicate that significant recombination/genetic acquisition/loss has occurred within the genus, and this muddles proper speciation.  相似文献   

3.
4.
Pseudomonas entomophila is an entomopathogenic bacterium that, upon ingestion, kills Drosophila melanogaster as well as insects from different orders. The complete sequence of the 5.9-Mb genome was determined and compared to the sequenced genomes of four Pseudomonas species. P. entomophila possesses most of the catabolic genes of the closely related strain P. putida KT2440, revealing its metabolically versatile properties and its soil lifestyle. Several features that probably contribute to its entomopathogenic properties were disclosed. Unexpectedly for an animal pathogen, P. entomophila is devoid of a type III secretion system and associated toxins but rather relies on a number of potential virulence factors such as insecticidal toxins, proteases, putative hemolysins, hydrogen cyanide and novel secondary metabolites to infect and kill insects. Genome-wide random mutagenesis revealed the major role of the two-component system GacS/GacA that regulates most of the potential virulence factors identified.  相似文献   

5.
Aims:  To investigate whether the entomopathogenic bacterium Pseudomonas entomophila can synthesize hydrogen cyanide (HCN).
Methods and Results:  Cyanide production was assayed for during the growth of P. entomophila in liquid culture and during colonial growth. Pseudomonas entomophila produced HCN at a concentration of up to 40 μmol l−1 during growth in liquid cultures and its production was found to be affected by oxygen availability, with levels increasing as the oxygen-transfer coefficient decreased. Pseudomonas entomophila made HCN during colonial growth at levels greater (approximately threefold) than those made by the well studied cyanogenic bacterium Pseudomonas aeruginosa .
Conclusions:  This study demonstrated unequivocally that P. entomophila can synthesize HCN, placing it among the small number of cyanogenic bacteria. Our data indicate that HCN production in P. entomophila is regulated by oxygen availability.
Significance and Impact of the Study:  Pseudomonas entomophila was recently identified to be the only pseudomonad that naturally infects and induces lethality of Drosophila melanogaster . The virulence factors which contribute to entomopathogenicity exerted by this species are largely unknown. In this study, we demonstrate that P. entomophila produces HCN, a secondary metabolite implicated in biocontrol properties and pathogenicity exerted by other bacteria.  相似文献   

6.
Lipopolysaccharides constitute the outer leaflet of the outer membrane of Gram-negative bacteria and are therefore essential for cell growth and viability. The heptosyltransferase WaaC is a glycosyltransferase (GT) involved in the synthesis of the inner core region of LPS. It catalyzes the addition of the first L-glycero-D-manno-heptose (heptose) molecule to one 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue of the Kdo2-lipid A molecule. Heptose is an essential component of the LPS core domain; its absence results in a truncated lipopolysaccharide associated with the deep-rough phenotype causing a greater susceptibility to antibiotic and an attenuated virulence for pathogenic Gram-negative bacteria. Thus, WaaC represents a promising target in antibacterial drug design. Here, we report the structure of WaaC from the Escherichia coli pathogenic strain RS218 alone at 1.9 A resolution, and in complex with either ADP or the non-cleavable analog ADP-2-deoxy-2-fluoro-heptose of the sugar donor at 2.4 A resolution. WaaC adopts the GT-B fold in two domains, characteristic of one glycosyltransferase structural superfamily. The comparison of the three different structures shows that WaaC does not undergo a domain rotation, characteristic of the GT-B family, upon substrate binding, but allows the substrate analog and the reaction product to adopt remarkably distinct conformations inside the active site. In addition, both binary complexes offer a close view of the donor subsite and, together with results from site-directed mutagenesis studies, provide evidence for a model of the catalytic mechanism.  相似文献   

7.
Fungal virulence has been mostly associated with cuticle-degrading enzymes that can be regulated depending on nutrient conditions. However, few studies have related fungal virulence to insect-toxic secreted proteins. Here, we describe how the presence of secreted toxic proteins may be linked to conidial virulence, which can be affected by nutrient factors. In this study we evaluated: (1) the virulence of the conidia of four Beauveria bassiana strains (EABb 01/103-Su, EABb 01/12-Su, EABb 01/88-Su and EABb 01/110-Su) grown on three different media (malt extract agar (MA), Rice (Rice), Sabouraud dextrose agar (SDA) and harvested from the cadavers of fungal-infected Galleria mellonella larvae (CAD) and (2) the toxicity of the crude soluble protein extracts (CSPEs) obtained from Adamek’s liquid medium inoculated with these conidia. Conidial suspensions were obtained from the four media, assessed on G. mellonella larvae and used to produce CSPEs that were injected into healthy G. mellonella larvae. The larvae were also injected with conidia obtained from MA and CAD cultures to expose them to in vivo-secreted proteins. For all isolates, the CAD conidia were by far the most virulent, followed by conidia grown on SDA, Rice and MA. The injected CSPEs showed the same toxicity trends as the conidial suspensions. In addition, the outcomes of injection of the in vivo-secreted proteins showed that the toxic proteins secreted in vitro by the EABb 01/110-Su strain are not produced in vivo. However, the other strains produced toxic proteins both in vivo and in vitro, suggesting that these toxic proteins may be virulence factors involved in invertebrate pathogenesis.  相似文献   

8.
We report the analysis of three open reading frames of Salmonella typhimurium LT2 which we identified as rfaF, the structural gene for ADP-heptose:LPS heptosyltransferase II; rfaD, the structural gene for ADP-L-glycero-D-manno-heptose-6-epimerase; and part of kbl, the structural gene for 2-amino-3-ketobutyrate CoA ligase. A plasmid carrying rfaF complements an rfaF mutant of S. typhimurium; rfaD and kbl are homologous to and in the same location as the equivalent genes in Escherichia coli K-12. The RfaF (heptosyl transferase II) protein shares regions of amino acid homology with RfaC (heptosyltransferase I), RfaQ (postulated to be heptosyltransferase III), and KdtA (ketodeoxyoctonate transferase), suggesting that these regions function in heptose binding. E. coli contains a block of DNA of about 1,200 bp between kbl and rfaD which is missing from S. typhimurium. This DNA includes yibB, which is an open reading frame of unknown function, and two promoters upstream of rfaD (P3, a heat-shock promoter, and P2). Both S. typhimurium and E. coli rfaD genes share a normal consensus promoter (P1). We postulate that the yibB segment is an insertion into the line leading to E. coli from the common ancestor of the two genera, though it could be a deletion from the line leading to S. typhimurium. The G+C content of the rfaLKZYJI genes of both S. typhimurium LT2 and E. coli K-12 is about 35%, much lower than the average of enteric bacteria; if this low G+C content is due to lateral transfer from a source of low G+C content, it must have occurred prior to evolutionary divergence of the two genera.  相似文献   

9.
Amber disease in the New Zealand grass grub (Costelytra zealandica) is caused by some strains of Serratia entomophila or Serratia proteamaculans (Enterobacteriaceae). When treated with pathogenic isolates, larvae ceased feeding within 48 h, developed an amber coloration after 72 h, and entered a long chronic phase without feeding. An acute dose of 2-4 x 10(4) pathogenic bacteria was sufficient to produce disease in 50% of treated larvae. Time to death was directly related to temperature. At 15 degrees C, infected larvae remained in a chronic, nonfeeding state for more than 4 months prior to death. Nonpathogenic isolates, lacking the disease-causing plasmid (pADAP), had no effect on either feeding or disease. Twenty-four hours after ingestion, bacteria were found predominantly in the hindgut and growth occurred primarily within the fermentation chamber and in the head section of the larvae. Nonpathogenic strains did not multiply in treated larvae. Treatment of diseased larvae with antibiotic eliminated Serratia cells from the insects but did not result in restoration of feeding or the dark gut characteristic of the healthy larva.  相似文献   

10.
It was demonstrated that the lipopolysaccharides (LPS) preparations, which were isolated from all representatives of Francisella Genus bacteria, i.e. F. tularensis, F. novicida, F. novicida-like and F. philomiragia by using the method of R.P. Darveau, R.E. Hancock (1983), were not toxic for white rats and white mice. A comparative study of toxicity of live F. tularensis bacteria (both wild and LPS-defective strains) made it possible to establish a direct correlation between the toxicity of microbes and LPS chemotype. It was found that only typical strains, which synthesize the wild-type S-LPS, caused the death of white rats and white mice in 24 hours after intraperitoneal contamination (10(9), 10(10) CFU/animal). Live bacteria of F tularensis R-mutants were not able to induce a lethal infection of rats and retained only residual virulence for mice. Other representatives of Francissela genus possessed less pronounced pathogenic properties. Thus, the toxic effect was registered, in case of white rats, only for F. novicida but not for F. novicida-like or F. philomiragia. At the same time, the two last mentioned species displayed a certain degree of virulence at high challenge doses (10(9), 10(10) CFU/animal) in respect to white mice. F. philomiragia, which generated lipoolygosaccharide (LOS) with an unusual structure, was found to be least pathogenic (25-75% of dead mice). The toxicity of bacteria, killed experimentally by different means (heating, UV-light, chloroform, acetone and formalin), was studied to define the role of bacterial proteins in the realisation of F. tularensis toxic potential in vivo. No lethal effect was exerted on experimental animals by killed microbes or purified LPS preparations. Finally, the study results show a priority role of the LPS molecule in the toxic effect of F. tularensis, which is possible in vivo only if structurally valuable molecules of live bacterial cells are available.  相似文献   

11.
Strains of Serratia spp. showed a high level of virulence when injected into the hemocoel of larvae Costelytra zealandica, with Serratia entomophila, S. plymuthica, and S. marcescens showing significantly higher virulence than S. proteamaculans. Toxicity was independent of the amber disease-causing plasmid pADAP, suggesting a generalized Serratia toxin.  相似文献   

12.
糖基转移酶(glycosyltransferases,GTs)将糖基从活化的供体转移到糖、脂、蛋白质和核酸等受体,其参与的蛋白质糖基化是最重要的翻译后修饰(post-translational modifications,PTMs)之一。近年来越来越多的研究证明,糖基转移酶与致病菌毒力密切相关,在致病菌的黏附、免疫逃逸和定殖等生物学过程中发挥关键作用。目前,已鉴定的糖基转移酶根据其蛋白质三维结构特征分为3种类型GT-A、GT-B和GT-C,其中常见的是GT-A和GT-B型。在致病菌中发挥黏附功能的糖基转移酶,在结构上属于GT-B或GT-C型,对致病菌表面蛋白质(黏附蛋白、自转运蛋白等)进行糖基化修饰,在致病菌黏附、生物被膜的形成和毒力机制发挥具有重要作用。糖基转移酶不仅参与致病菌黏附这一感染初始过程,其中属于GT-A型的一类致病菌糖基转移酶会进入宿主细胞,通过糖基化宿主蛋白质影响宿主信号传导、蛋白翻译和免疫应答等生物学功能。本文就常见致病菌糖基转移酶的结构及其糖基化在致病机制中的作用进行综述,着重介绍了特异性糖基化高分子量(high-molecular-weight,HMW)黏附蛋白的糖基转移酶、针对富丝氨酸重复蛋白(serine-rich repeat proteins,SRRP)糖基化修饰的糖基转移酶、细菌自转运蛋白庚糖基转移酶(bacterial autotransporter heptosyltransferase,BAHT)家族、N-糖基化蛋白质系统和进入宿主细胞发挥毒力作用的大型梭菌细胞毒素、军团菌(Legionella)葡萄糖基转移酶以及肠杆菌科的效应子NleB。为揭示致病菌中糖基转移酶致病机制的系统性研究提供参考,为未来致病菌的诊断、药物设计研发以及疫苗开发等提供科学依据和思路。  相似文献   

13.
Pathogens have developed multiple strategies that allow them to exploit host resources and resist the immune response. To study how Drosophila flies deal with infectious diseases in a natural context, we investigated the interactions between Drosophila and a newly identified entomopathogen, Pseudomonas entomophila. Flies orally infected with P. entomophila rapidly succumb despite the induction of both local and systemic immune responses, indicating that this bacterium has developed specific strategies to escape the fly immune response. Using a combined genetic approach on both host and pathogen, we showed that P. entomophila virulence is multi-factorial with a clear differentiation between factors that trigger the immune response and those that promote pathogenicity. We demonstrate that AprA, an abundant secreted metalloprotease produced by P. entomophila, is an important virulence factor. Inactivation of aprA attenuated both the capacity to persist in the host and pathogenicity. Interestingly, aprA mutants were able to survive to wild-type levels in immune-deficient Relish flies, indicating that the protease plays an important role in protection against the Drosophila immune response. Our study also reveals that the major contribution to the fly defense against P. entomophila is provided by the local, rather than the systemic immune response. More precisely, our data points to an important role for the antimicrobial peptide Diptericin against orally infectious Gram-negative bacteria, emphasizing the critical role of local antimicrobial peptide expression against food-borne pathogens.  相似文献   

14.
Two recently sequenced genomes of the insect-pathogenic bacterium Photorhabdus and a large Serratia entomophila plasmid, pADAP, have phage-related loci containing putative toxin effector genes, designated the "Photorhabdus virulence cassettes" (PVCs). In S. entomophila, the single plasmid PVC confers antifeeding activity on larvae of a beetle. Here, we show that recombinant Escherichia coli expressing PVC-containing cosmids from Photorhabdus has injectable insecticidal activity against larvae of the wax moth. Electron microscopy showed that the structure of the PVC products is similar to the structure of the antibacterial R-type pyocins. However, unlike these bacteriocins, the PVC products of Photorhabdus have no demonstrable antibacterial activity. Instead, injection of Photorhabdus PVC products destroys insect hemocytes, which undergo dramatic actin cytoskeleton condensation. Comparison of the genomic organizations of several PVCs showed that they have a conserved phage-like structure with a variable number of putative anti-insect effectors encoded at one end. Expression of these putative effectors directly inside cultured cells showed that they are capable of rearranging the actin cytoskeleton. Together, these data show that the PVCs are functional homologs of the S. entomophila antifeeding genes and encode physical structures that resemble bacteriocins. This raises the interesting hypothesis that the PVC products are bacteriocin-like but that they have been modified to attack eukaryotic host cells.  相似文献   

15.
The greater wax moth Galleria mellonella has been exploited worldwide as an alternative model host for studying pathogenicity and virulence factors of different pathogens, including Legionella pneumophila, a causative agent of a severe form of pneumonia called Legionnaires' disease. An important role in the insect immune response against invading pathogens is played by apolipophorin III (apoLp-III), a lipid- and pathogen associated molecular pattern-binding protein able to inhibit growth of some Gram-negative bacteria, including Legionella dumoffii. In the present study, anti-L. pneumophila activity of G. mellonella apoLp-III and the effects of the interaction of this protein with L. pneumophila cells are demonstrated. Alterations in the bacteria cell surface occurring upon apoLp-III treatment, revealed by Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy, are also documented. ApoLp-III interactions with purified L. pneumophila LPS, an essential virulence factor of the bacteria, were analysed using electrophoresis and immunoblotting with anti-apoLp-III antibodies. Moreover, FTIR spectroscopy was used to gain detailed information on the type of conformational changes in L. pneumophila LPS and G. mellonella apoLp-III induced by their mutual interactions. The results indicate that apoLp-III binding to components of bacterial cell envelope, including LPS, may be responsible for anti-L. pneumophila activity of G. mellonella apoLp-III.  相似文献   

16.
Moraxella catarrhalis has recently been shown to be both widespread and pathogenic, in contrast to previous reports. Several factors have been suggested as virulence factors, lipopolysaccharide (LPS) being one. Recent studies have shown the LPS to be without the O-chain, i.e. the polysaccharide part, and to have specific structural features corresponding to each of the three serogroups, A, B and C. The structures resemble in many respects those present in other Gram-negative nonenteric bacteria, with a galabiosyl element as a prominent common denominator. The presence of such common structures suggests that the LPS of these bacteria might be a part of a mechanism of survival for bacteria colonizing the human host.  相似文献   

17.
A DNA locus from Bordetella pertussis capable of reconstituting lipopolysaccharide (LPS) O-antigen biosynthesis in Salmonella typhimurium SL3789 (rfaF511) has been isolated, by using selection with the antibiotic novobiocin. DNA within the locus encodes a protein with amino acid sequence similarity to heptosyltransferase II, encoded by waaF (previously rfaF) in other gram-negative bacteria. Mutation of this gene in B. pertussis, Bordetella parapertussis, and Bordetella bronchiseptica by allelic exchange generated bacteria with deep rough LPS phenotypes consistent with the proposed function of the gene as an inner core heptosyltransferase. These are the first LPS mutants generated in B. parapertussis and B. bronchiseptica and the first deep rough mutants of any of the bordetellae.  相似文献   

18.
Some strains of Serratia entomophila and S. proteamaculans cause amber disease of the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. The disease determinants of S. entomophila, are encoded on a 153,404-bp plasmid, termed pADAP for amber disease associated plasmid. The S. proteamaculans strain 143 (Sp143) exhibits an unusual pathotype, where only 60-70% of C. zealandica larvae infected with the bacterium succumb to disease. DNA sequence analysis of the Sp143 pU143 virulence associated region identified high DNA similarity to the pADAP sep virulence associated region, with DNA sequence variation in the sepA gene and the variable region of the sepC component. No pADAP anti-feeding prophage orthologue was detected in the Sp143 genome. The region of pADAP replication was cloned and found to replicate in S. entomophila but not in Escherichia coli. DNA sequence analysis of the plasmid pSG348 repA gene from the French isolate of Serratia grimesii, identified 93% DNA identity to the pADAP repA gene. A comparison of the pU143 virulence associated region with the completed pADAP nucleotide sequence is given.  相似文献   

19.
He P  Shan L  Sheen J 《Cellular microbiology》2007,9(6):1385-1396
Recent studies have uncovered fascinating molecular mechanisms underlying plant-microbe interactions that coevolved dynamically. As in animals, the primary plant innate immunity is immediately triggered by the detection of common pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs). Different MAMPs are often perceived by distinct cell-surface pattern-recognition receptors (PRRs) and activate convergent intracellular signalling pathways in plant cells for broad-spectrum immunity. Successful pathogens, however, have evolved multiple virulence factors to suppress MAMP-triggered immunity. Specifically, diverse pathogenic bacteria have employed the type III secretion system to deliver a repertoire of virulence effector proteins to interfere with host immunity and promote pathogenesis. Plants challenged by pathogens have evolved the secondary plant innate immunity. In particular, some plants possess the specific intracellular disease resistance (R) proteins to effectively counteract virulence effectors of pathogens for effector-triggered immunity. This potent but cultivar-specific effector-triggered immunity occurs rapidly with localized programmed cell death/hypersensitive response to limit pathogen proliferation and disease development. Remarkably, bacteria have further acquired virulence effectors to block effector-triggered immunity. This review covers the latest findings in the dynamics of MAMP-triggered immunity and its interception by virulence factors of pathogenic bacteria.  相似文献   

20.
Cell surface lipopolysaccharide (LPS) is a well characterized virulence determinant for the human pathogen Haemophilus influenzae, so an investigation of LPS in the less pathogenic Haemophilus parainfluenzae could yield important insights. Using a panel of 18 commensal H. parainfluenzae isolates we demonstrate that the set of genes for inner core LPS biosynthesis largely resembles that of H. influenzae, with an additional heptosyltransferase I gene similar to waaC from Pasteurella multocida. Inner core LPS structure is therefore likely to be largely conserved across the two Haemophilus species. Outer core LPS biosynthetic genes are much less prevalent in H. parainfluenzae, although homologues of the H. influenzae LPS genes lpsB, non-phase variable lic2A and lgtC, and losA1, losB1 and lic2C are found in certain isolates. Immunoblotting using antibodies directed against selected LPS epitopes was consistent with these data. We found no evidence for tetranucleotide repeat-mediated phase variation in H. parainfluenzae. Phosphocholine, a phase variable H. influenzae LPS epitope that has been implicated in disease, was absent in H. parainfluenzae LPS as were the respective (lic1) biosynthetic genes. The introduction of the lic1 genes into H. parainfluenzae led to the phase variable incorporation of phosphocholine into its LPS. Differences in LPS structure between Haemophilus species could affect interactions at the bacterial-host interface and therefore the pathogenic potential of these bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号