首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells   总被引:1,自引:0,他引:1  
We have identified the presence of leupaxin (LPXN), which belongs to the paxillin extended family of focal adhesion-associated adaptor proteins, in prostate cancer cells. Previous studies have demonstrated that LPXN is a component of the podosomal signaling complex found in osteoclasts, where LPXN was found to associate with the protein tyrosine kinases Pyk2 and c-Src and the cytosolic protein tyrosine phosphatase-proline-, glutamate-, serine-, and threonine-rich sequence (PTP-PEST). In the current study, LPXN was detectable as a 50-kDa protein in PC-3 cells, a bone-derived metastatic prostate cancer cell line. In PC-3 cells, LPXN was also found to associate with Pyk2, c-Src, and PTP-PEST. A siRNA-mediated inhibition of LPXN resulted in decreased in vitro PC-3 cell migration. A recombinant adenoviral-mediated overexpression of LPXN resulted in an increased association of Pyk2 with LPXN, whereas a similar adenoviral-mediated overexpression of PTP-PEST resulted in decreased association of Pyk2 and c-Src with LPXN. The overexpression of LPXN in PC-3 cells resulted in increased migration, as assessed by in vitro Transwell migration assays. On the contrary, the overexpression of PTP-PEST in PC-3 cells resulted in decreased migration. The overexpression of LPXN resulted in increased activity of Rho GTPase, which was decreased in PTP-PEST-overexpressing cells. The increase in Rho GTPase activity following overexpression of LPXN was inhibited in the presence of Y27632, a selective inhibitor of Rho GTPase. In conclusion, our data demonstrate that LPXN forms a signaling complex with Pyk2, c-Src, and PTP-PEST to regulate migration of prostate cancer cells. PC-3; protein tyrosine phosphatase-proline-, glutamate-, serine-, and threonine-rich sequence; c-Src; migration  相似文献   

2.
Signaling via the Pyk2-Src-Cbl complex downstream of integrins contributes to the assembly, organization, and dynamics of podosomes, which are the transient adhesion complexes of highly motile cells such as osteoclasts and dendritic cells. We previously demonstrated that the GTPase dynamin is associated with podosomes, regulates actin flux in podosomes, and promotes bone resorption by osteoclasts. We report here that dynamin associates with Pyk2, independent of dynamin''s GTPase activity, and reduces Pyk2 Y402 phosphorylation in a GTPase-dependent manner, leading to decreased Src binding to Pyk2. Overexpressing dynamin decreased the macrophage colony-stimulating factor- and adhesion-induced phosphorylation of Pyk2 in osteoclastlike cells, suggesting that dynamin is likely to regulate Src-Pyk2 binding downstream of integrins and growth factor receptors with important cellular consequences. Furthermore, catalytically active Src promotes dynamin-Pyk2 association, and mutating specific Src-phosphorylated tyrosine residues in dynamin blunts the dynamin-induced decrease in Pyk2 phosphorylation. Thus, since Src binds to Pyk2 through its interaction with phospho-Y402, our results suggest that Src activates a negative-feedback loop downstream of integrin engagement and other stimuli by promoting both the binding of dynamin to Pyk2-containing complexes and the dynamin-dependent decrease in Pyk2 Y402 phosphorylation, ultimately leading to the dissociation of Src from Pyk2.Podosomes are specialized transient actin-containing adhesion structures (11, 14, 37, 60) that are found in highly motile cells, such as osteoclasts, macrophages, dendritic cells, transformed metastatic cells, and v-src-transformed cells (37, 43), where they are thought to play important roles in cellular migration and invasion (34). In resorbing osteoclasts on bone, podosomes are concentrated within the sealing zone, a beltlike actin-rich structure that is important for adhesion and which delineates the resorptive region of the cell known as the ruffled border. Unlike focal adhesions, which are relatively stable structures (11, 60), the assembly and disassembly of podosomes occurs within minutes (t1/2 = 2 to 4 min) and involves the recruitment and activation of integrins, signaling proteins and scaffolding proteins (11, 14, 35, 47, 60). However, the mechanisms of action of key signaling proteins involved in podosome assembly and disassembly are only partially understood.The focal adhesion kinase Pyk2 has been linked to the proliferation, migration, and activity of a variety of mesenchymal, epithelial, and hematopoietic cell types. Several groups, including our own, have reported the importance of Pyk2 in podosome belt organization, cell spreading, and bone-resorbing activity in osteoclasts (18, 26, 31, 40, 65, 66). Pyk2 is recruited to activated β2 and β3 integrins (9, 20) at adhesion sites and is autophosphorylated at Y402 (17, 47, 50) via an intermolecular trans-acting mechanism (46). Although Pyk2 is partially activated by integrin-induced Ca2+ signaling (20, 50), the induction of Pyk2''s full catalytic activity requires the binding of Src via its SH2 domain to autophosphorylated Pyk2 Y402 and the subsequent phosphorylation of Pyk2 at functionally distinct sites, including Y579, Y580, and Y881 (17, 31, 46). The binding of Src to phosphorylated Pyk2, which leads to the formation of a multiprotein signaling complex at adhesion sites (17, 40, 50), is critical for Pyk2 activity, as demonstrated by the fact that Pyk2 phosphorylation and activity are significantly reduced in osteoclasts derived from Src−/− mice (17, 40). Src−/− osteoclasts also exhibit decreased motility (50) and decreased bone-resorbing activity (40, 54, 59), and we recently demonstrated that Src promotes both podosome formation and disassembly, as well as actin flux into existing podosomes and the organization of podosomes into a peripheral belt in osteoclasts (15).We have also demonstrated that the GTP-hydrolyzing protein dynamin-2, which is ubiquitously expressed and well known for its role in endocytosis (53), regulates actin remodeling in the podosomes of osteoclasts and Rous sarcoma virus-transformed baby hamster kidney cells (43). In addition, a dynamin-2 mutant that binds GTP with reduced affinity (dynK44A) (12) decreased the flux of actin into podosomes (43) and disrupted podosome belt formation in osteoclasts, thereby affecting osteoclast migration and bone-resorbing activity (8). The dynamin proteins, of which there are three homologous isoforms (3), contain several protein domains: a GTP-hydrolyzing domain (GTPase), a plextrin homology domain that mediates binding to phosphoinositides, a GTPase effector domain (GED), and a C-terminal proline-rich domain (PRD) (38, 45, 55) through which dynamin binds a number of functionally diverse SH3-containing molecules, such as Src, cortactin, Grb2, and N-Wasp (1, 7, 27, 39, 58). We previously reported that dynamin-2 partially colocalizes and associates with the E3-ubiquitin ligase Cbl within the podosome belt/sealing zone of osteoclasts, as well as in SYF cells, which lack the Src family kinases Src, Yes, and Fyn, and in HEK 293 cells that stably express the vitronectin receptor (293VnR) (8). Protein complexes containing dynamin-2 and Cbl, which are both substrates of Src (1, 2, 23, 50, 56), were disrupted in the presence of activated Src and stabilized in the absence of Src (8), demonstrating a key role of Src in regulating the formation of signaling complexes in osteoclasts downstream of integrins.In the present study, we sought to determine whether dynamin, which regulates podosome actin dynamics and bone resorption in osteoclasts, also associates with Pyk2 and/or regulates Pyk2''s activities in osteoclasts. We report here that dynamin associates with Pyk2 and promotes the dephosphorylation of Pyk2 Y402 and that catalytically active Src promotes both dynamin''s association with Pyk2 and the dynamin-induced dephosphorylation of Pyk2 Y402, resulting, in turn, in the decreased binding of Src to Pyk2. Thus, we propose that dynamin regulates podosome dynamics and osteoclast bone-resorbing activity by promoting the disassembly of the Pyk2-Src-Cbl complex that is formed in osteoclasts downstream of β3 integrin activation.  相似文献   

3.
Cell membranes undergo continuous curvature changes as a result of membrane trafficking and cell motility. Deformations are achieved both by forces extrinsic to the membrane as well as by structural modifications in the bilayer or at the bilayer surface that favor the acquisition of curvature. We report here that a family of proteins previously implicated in the regulation of the actin cytoskeleton also have powerful lipid bilayer-deforming properties via an N-terminal module (F-BAR) similar to the BAR domain. Several such proteins, like a subset of BAR domain proteins, bind to dynamin, a GTPase implicated in endocytosis and actin dynamics, via SH3 domains. The ability of BAR and F-BAR domain proteins to induce tubular invaginations of the plasma membrane is enhanced by disruption of the actin cytoskeleton and is antagonized by dynamin. These results suggest a close interplay between the mechanisms that control actin dynamics and those that mediate plasma membrane invagination and fission.  相似文献   

4.
The GTPase dynamin is required for endocytic vesicle formation. Dynamin has also been implicated in regulating the actin cytoskeleton, but the mechanism by which it does so is unclear. Through interactions via its proline-rich domain (PRD), dynamin binds several proteins, including cortactin, profilin, syndapin, and murine Abp1, that regulate the actin cytoskeleton. We investigated the interaction of dynamin2 and cortactin in regulating actin assembly in vivo and in vitro. When expressed in cultured cells, a dynamin2 mutant with decreased affinity for GTP decreased actin dynamics within the cortical actin network. Expressed mutants of cortactin that have decreased binding of Arp2/3 complex or dynamin2 also decreased actin dynamics. Dynamin2 influenced actin nucleation by purified Arp2/3 complex and cortactin in vitro in a biphasic manner. Low concentrations of dynamin2 enhanced actin nucleation by Arp2/3 complex and cortactin, and high concentrations were inhibitory. Dynamin2 promoted the association of actin filaments nucleated by Arp2/3 complex and cortactin with phosphatidylinositol 4,5-bisphosphate (PIP2)-containing lipid vesicles. GTP hydrolysis altered the organization of the filaments and the lipid vesicles. We conclude that dynamin2, through an interaction with cortactin, regulates actin assembly and actin filament organization at membranes.  相似文献   

5.
Osteoprotegerin has previously been shown to modulate bone mass by blocking osteoclast maturation and function. The detailed mechanisms of osteoprotegerin-induced disassembly of podosomes, disruption of adhesive structures and modulation of adhesion-related proteins in osteoclasts, however, are not well characterized. In this study, tartrate-resistant acidic phosphatase staining demonstrated that osteoprotegerin inhibited differentiation of osteoclasts. The use of scanning electron microscopy, real-time cell monitoring and confocal microscopy indicated that osteoclasts responded in a time and dose-dependent manner to osteoprotegerin treatments with retraction of peripheral adhesive structures and detachment from the extracellular substrate. Combined imaging and Western blot studies showed that osteoprotegerin induced dephosphorylation of Tyr 402 in Pyk2 and decreased its labeling in peripheral adhesion regions. osteoprotegerin induced increased intracellular labeling of Tyr 402 in Pyk2, Tyr 416 in Src, increased dephosphorylation of Tyr 527 in Src, and increased Pyk2/Src association in the central region of osteoclasts. This evidence suggests that Src may function as an adaptor protein that competes for Pyk2 and relocates it from the peripheral adhesive zone to the central region of osteoclasts in response to osteoprotegerin treatment. Osteoprotegerin may induce podosome reassembly and peripheral adhesive structure detachment by modulating phosphorylation of Pyk2 and Src and their intracellular distribution in osteoclasts.  相似文献   

6.
PSTPIP is a tyrosine-phosphorylated protein involved in the organization of the cytoskeleton. Its ectopic expression induces filipodial-like membrane extensions in NIH 3T3 cells. We previously observed a defect in cytokinesis and an increase in the tyrosine phosphorylation of PSTPIP in PTP-PEST-deficient fibroblasts. In this article, we demonstrate that PTP-PEST and PSTPIP are found in the same complexes in vivo and that they interact directly through the CTH domain of PTP-PEST and the coiled-coil domain of PSTPIP. We tested pathways that could regulate the tyrosine phosphorylation of PSTPIP. We found that the activation of the epidermal growth factor and platelet-derived growth factor receptors can induce PSTPIP phosphorylation. With the use of the PP2 inhibitor, we demonstrate that Src kinases are not involved in the epidermal growth factor-mediated phosphorylation of PSTPIP. Together with previous results, this suggests that c-Abl is the critical tyrosine kinase downstream of growth factor receptors responsible for PSTPIP phosphorylation. We also demonstrate that PTP-PEST dephosphorylates PSTPIP at tyrosine 344. Importantly, we identified tyrosine 344 as the main phosphorylation site of PSTPIP by performing tryptic phosphopeptide maps. This is an important finding since tyrosine 367 of PSTPIP was also proposed as a candidate phosphorylation site involved in the negative regulation of the association between PSTPIP and WASP. In this respect, we observed that the PSTPIP.WASP complex is stable in vivo and is not affected by the phosphorylation of PSTPIP. Furthermore, we demonstrate that PSTPIP serves as a scaffold protein between PTP-PEST and WASP and allows PTP-PEST to dephosphorylate WASP. This finding suggests a possible mechanism for PTP-PEST to directly modulate actin remodeling through the PSTPIP-WASP interaction.  相似文献   

7.
8.
Integration of signalling pathways initiated by receptor tyrosine kinases and integrins is essential for growth-factor-mediated biological responses. Here we show that co-stimulation of growth-factor receptors and integrins activates the focal-adhesion kinase (FAK) family to promote outgrowth of neurites in PC12 and SH-SY5Y cells. Pyk2 and FAK associate with adhesion-based complexes that contain epidermal growth factor (EGF) receptors, through their carboxy- and amino-terminal domains. Expression of the C-terminal domain of Pyk2 or of FAK is sufficient to block neurite outgrowth, but not activation of extracellular-signal-regulated kinase (ERK). Moreover, activation and autophosphorylation of Pyk2/FAK, as well as of effectors of their adhesion-targeting domains, such as paxillin, are important for propagation of signals that control neurite formation. Thus, Pyk2/FAK have important functions in signal integration proximal to integrin/growth-factor receptor complexes in neurons.  相似文献   

9.
NFAT and Osterix cooperatively regulate bone formation   总被引:13,自引:0,他引:13  
  相似文献   

10.
The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton.  相似文献   

11.
Dopamine D2 receptors (D2Rs; short form, which is one of the alternative splicing variants) expressed in COS-7 cells are internalized in an agonist-dependent manner only when G protein-coupled receptor kinase 2 (GRK2) is coexpressed [Ito, K., Haga, T., Lameh, J. & Sadée, W., (1999) Eur. J. Biochem. 260, 112-119]. We have examined the effects of coexpression of dynamin, a small molecular mass GTP-binding protein, rab5A, and their mutants on the internalization of D2Rs in the presence of both dopamine (10 or 100 microM) and GRK2. The rate and extent of D2R internalization was increased or decreased by coexpression of dynamin I or a dominant-negative form of dynamin I (dynamin I K44E), respectively. The effects of coexpressing these two dynamins were more prominent at 10 microM dopamine than at 100 microM. In the presence of 10 microM dopamine, internalization of D2R was completely suppressed when dynamin I K44E was coexpressed, and the half-life (t 1/2) of D2R internalization decreased relative to cells not expressing dynamin from 82 to 29 min when dynamin I was coexpressed. Internalization of D2Rs was facilitated or suppressed by coexpression of a constitutively active form of rab5A (rab5A Q79L) or a dominant-negative form of rab5A (rab5A S34N), respectively. The t 1/2 of D2R internalization at 10 microM dopamine decreased from 82 to 16 min in cells coexpressing rab5A Q79L. The effect of coexpression of rab5A S34N was more apparent at 100 microM dopamine than at 10 microM; the t 1/2 of D2R internalization at 100 microM dopamine increased from 20 to 56 min and the proportion of internalized D2Rs after 120 min decreased from 53 to 28%. These results indicate that the internalization of D2Rs is dependent on the action of dynamin as well as GRK2, and is regulated by the action of rab5A.  相似文献   

12.
Cell–cell fusion is an evolutionarily conserved process that leads to the formation of multinucleated myofibers, syncytiotrophoblasts and osteoclasts, allowing their respective functions. Although cell–cell fusion requires the presence of fusogenic membrane proteins and actin-dependent cytoskeletal reorganization, the precise machinery allowing cells to fuse is still poorly understood. Using an inducible knockout mouse model to generate dynamin 1– and 2–deficient primary osteoclast precursors and myoblasts, we found that fusion of both cell types requires dynamin. Osteoclast and myoblast cell–cell fusion involves the formation of actin-rich protrusions closely associated with clathrin-mediated endocytosis in the apposed cell. Furthermore, impairing endocytosis independently of dynamin also prevented cell–cell fusion. Since dynamin is involved in both the formation of actin-rich structures and in endocytosis, our results indicate that dynamin function is central to the osteoclast precursors and myoblasts fusion process, and point to an important role of endocytosis in cell–cell fusion.  相似文献   

13.
14.
15.
16.
The focal adhesion kinase Pyk2 integrates signals from cell adhesion receptors, growth factor receptors, and G-protein-coupled receptors leading to the activation of intracellular signaling pathways that regulate cellular phenotypes. The intrinsic mechanism for the activation of Pyk2 activity remains to be fully defined. Previously, we reported that mutations in the N-terminal FERM domain result in loss of Pyk2 activity and expression of the FERM domain as an autonomous fragment inhibits Pyk2 activity. In the present study, we sought to determine the mechanism that underlies these effects. Utilizing differentially epitope-tagged Pyk2 constructs, we observed that Pyk2 forms oligomeric complexes in cells and that complex formation correlates positively with tyrosine phosphorylation. Similarly, when expressed as an autonomous fragment, the Pyk2 FERM domain formed a complex with other Pyk2 FERM domains but not the FAK FERM domain. When co-expressed with full-length Pyk2, the autonomously expressed Pyk2 FERM domain formed a complex with full-length Pyk2 preventing the formation of Pyk2 oligomers and resulting in reduced Pyk2 phosphorylation. Deletion of the FERM domain from Pyk2 enhanced Pyk2 complex formation and phosphorylation. Together, these data indicate that the Pyk2 FERM domain is involved in the regulation of Pyk2 activity by acting to regulate the formation of Pyk2 oligomers that are critical for Pyk2 activity.  相似文献   

17.
18.
Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are non-receptor protein tyrosine kinases that are involved in cell proliferation, migration and survival. Current research of FAK and Pyk2 is greatly focused in cancer biology and several small molecule inhibitors are being tested under clinical development. Like cancer, certain chronic diseases such as cardiovascular disease, bone disease, fibrosis, rheumatoid arthritis, and neurological disorders, share malignant characteristics of cancer. Accumulating evidence has demonstrated that FAK and Pyk2 contribute to other proliferative and degenerative diseases. Thus, the goal of this review is to briefly highlight studies that have implicated FAK and Pyk2 as players in disease progression.  相似文献   

19.
The protein tyrosine kinase Pyk2 is highly expressed in osteoclasts, where it is primarily localized in podosomes. Deletion of Pyk2 in mice leads to mild osteopetrosis due to impairment in osteoclast function. Pyk2-null osteoclasts were unable to transform podosome clusters into a podosome belt at the cell periphery; instead of a sealing zone only small actin rings were formed, resulting in impaired bone resorption. Furthermore, in Pyk2-null osteoclasts, Rho activity was enhanced while microtubule acetylation and stability were significantly reduced. Rescue experiments by ectopic expression of wild-type or a variety of Pyk2 mutants in osteoclasts from Pyk2(-/-) mice have shown that the FAT domain of Pyk2 is essential for podosome belt and sealing zone formation as well as for bone resorption. These experiments underscore an important role of Pyk2 in microtubule-dependent podosome organization, bone resorption, and other osteoclast functions.  相似文献   

20.
The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号