首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquaporin family comprises of transmembrane channels that are specialized in conducting water and certain small, uncharged molecules across cell membranes. Essential roles of aquaporins in various physiological and pathophysiological conditions have attracted great scientific interest. Pioneering structural studies on aquaporins have almost solved the basic question of mechanism of selective water transport through these channels. Another important structural aspect of aquaporins which seeks attention is that how the flow of water through the channel is regulated by the mechanism of gating. Aquaporins are also regulated at the protein level, i.e. by trafficking which includes changes in their expression levels in the membrane. Availability of high resolution structures along with numerous molecular dynamics simulation studies have helped to gain an understanding of the structural mechanisms by which water flux through aquaporins is controlled. This review will summarize the highlights regarding structural features of aquaporins, mechanisms governing water permeation, proton exclusion and substrate specificity, and describe the structural insights into the mechanisms of aquaporin gating whereby water conduction is regulated by post translational modifications, such as phosphorylation.  相似文献   

2.
Plant aquaporins: Roles in plant physiology   总被引:2,自引:0,他引:2  

Background

Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms.

Scope of review

Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts.

Major conclusions

In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots.

General significance

Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins.  相似文献   

3.
Plant aquaporins   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
植物水孔蛋白研究进展   总被引:1,自引:0,他引:1  
水孔蛋白是植物重要的膜功能蛋白,不仅介导植物各组织间水分的高效转运,还参与植物体内其他物质的跨膜转运,同时在植物光合作用、生长发育、免疫应答以及信号转导等生理过程中也发挥重要作用。本文主要综述了植物水孔蛋白结构特征和分类,多种生理功能,以及其转录水平和转录后水平活性调节等方面的最新研究进展,并就如何系统全面地开展水孔蛋白参与植物生长发育过程的分子调控机制研究提出展望。植物水孔蛋白的深入研究有助于阐明植物体内物质转运的分子机理及其生理作用机制,对指导农业生产中作物的生长发育调控有重要理论意义。  相似文献   

6.
Due to the fact that most plants are immobile, a rapid response of physiological processes to changing environmental conditions is essential for their survival. Thus, in comparison to many other organisms, plants might need a more sophisticated tuning of water balance. Among others, this is reflected by the comparable large amount of aquaporin genes in plant genomes. So far, aquaporins were shown to be involved in many physiological processes like root water uptake, reproduction or photosynthesis. Their classification as simple water pores has changed according to their molecular function into channels permeable for water, small solutes and/or gases. An adjustment of the corresponding physiological process could be achieved by regulation mechanisms. Concerning aquaporins these range from posttranslational modification, molecular trafficking to heteromerization of aquaporin isoforms. The aim of this review is to underline the function of the four plant aquaporin family subclasses with regard to the substrate specificity, regulation and physiological relevance.  相似文献   

7.
Functional aquaporin diversity in plants   总被引:1,自引:0,他引:1  
Due to the fact that most plants are immobile, a rapid response of physiological processes to changing environmental conditions is essential for their survival. Thus, in comparison to many other organisms, plants might need a more sophisticated tuning of water balance. Among others, this is reflected by the comparable large amount of aquaporin genes in plant genomes. So far, aquaporins were shown to be involved in many physiological processes like root water uptake, reproduction or photosynthesis. Their classification as simple water pores has changed according to their molecular function into channels permeable for water, small solutes and/or gases. An adjustment of the corresponding physiological process could be achieved by regulation mechanisms. Concerning aquaporins these range from posttranslational modification, molecular trafficking to heteromerization of aquaporin isoforms. The aim of this review is to underline the function of the four plant aquaporin family subclasses with regard to the substrate specificity, regulation and physiological relevance.  相似文献   

8.
9.
The MIP (major intrinsic protein) proteins constitute a channel family of currently 150 members that have been identified in cell membranes of organisms ranging from bacteria to man. Among these proteins, two functionally distinct subgroups are characterized: aquaporins that allow specific water transfer and glycerol channels that are involved in glycerol and small neutral solutes transport. Since the flow of small molecules across cell membranes is vital for every living organism, the study of such proteins is of particular interest. For instance, aquaporins located in kidney cell membranes are responsible for reabsorption of 150 liters of water/day in adult human. To understand the molecular mechanisms of solute transport specificity, we analyzed mutant aquaporins in which highly conserved residues have been substituted by amino acids located at the same positions in glycerol channels. Here, we show that substitution of a tyrosine and a tryptophan by a proline and a leucine, respectively, in the sixth transmembrane helix of an aquaporin leads to a switch in the selectivity of the channel, from water to glycerol.  相似文献   

10.
Aquaporins are channel proteins that enhance the permeability of cell membranes for water. They have been found in Bacteria, Archaea and Eukaryotes. However, their absence in many microorganisms suggests that aquaporins do not fulfill a broad role such as turgor regulation or osmoadaptation but, instead, fulfill a role that enables microorganisms to have specific lifestyles. The recent discovery that aquaporins enhance cellular tolerance against rapid freezing suggests that they have ecological relevance. We have identified several examples of large-scale freeze-thawing of microbes in nature and we also draw attention to alternative lifestyle-related functions for aquaporins, which will be a focus of future research.  相似文献   

11.
Aquaporins are a family of water and small molecule channels found in organisms ranging from bacteria to animals. One of these channels, the E. coli protein aquaporin Z (AqpZ), has been shown to selectively conduct only water at high rates. We have expressed, purified, crystallized, and solved the X-ray structure of AqpZ. The 2.5 A resolution structure of AqpZ suggests aquaporin selectivity results both from a steric mechanism due to pore size and from specific amino acid substitutions that regulate the preference for a hydrophobic or hydrophilic substrate. This structure provides direct evidence on the molecular mechanisms of specificity between water and glycerol in this family of channels from a single species. It is to our knowledge the first atomic resolution structure of a recombinant aquaporin and so provides a platform for combined genetic, mutational, functional, and structural determinations of the mechanisms of aquaporins and, more generally, the assembly of multimeric membrane proteins.  相似文献   

12.
Aquaporins are a family of water and small molecule channels found in organisms ranging from bacteria to animals. One of these channels, the E. coli protein aquaporin Z (AqpZ), has been shown to selectively conduct only water at high rates. We have expressed, purified, crystallized, and solved the X-ray structure of AqpZ. The 2.5 Å resolution structure of AqpZ suggests aquaporin selectivity results both from a steric mechanism due to pore size and from specific amino acid substitutions that regulate the preference for a hydrophobic or hydrophilic substrate. This structure provides direct evidence on the molecular mechanisms of specificity between water and glycerol in this family of channels from a single species. It is to our knowledge the first atomic resolution structure of a recombinant aquaporin and so provides a platform for combined genetic, mutational, functional, and structural determinations of the mechanisms of aquaporins and, more generally, the assembly of multimeric membrane proteins.  相似文献   

13.
Aquaporins are a family of water and small molecule channels found in organisms ranging from bacteria to animals. One of these channels, the E. coli protein aquaporin Z (AqpZ), has been shown to selectively conduct only water at high rates. We have expressed, purified, crystallized, and solved the X-ray structure of AqpZ. The 2.5 Å resolution structure of AqpZ suggests aquaporin selectivity results both from a steric mechanism due to pore size and from specific amino acid substitutions that regulate the preference for a hydrophobic or hydrophilic substrate. This structure provides direct evidence on the molecular mechanisms of specificity between water and glycerol in this family of channels from a single species. It is to our knowledge the first atomic resolution structure of a recombinant aquaporin and so provides a platform for combined genetic, mutational, functional, and structural determinations of the mechanisms of aquaporins and, more generally, the assembly of multimeric membrane proteins.  相似文献   

14.
Twelve water channels (aquaporins) are expressed in mammalian reproductive systems, and play very important roles in maintaining water homeostasis in reproductive cells. Impairment of their functions can result in attenuated male and female fertility. Alteration of AQPs expression is also found in reproductive tissues of the patients with polycystic ovarian syndrome, endometriosis or endometrium carcinoma. A lot of data have increased understanding of the functions and mechanisms of regulation of aquaporins at both the molecular and the clinical level. Researches have also focused on aquaporins as therapeutic targets. This review discusses recent advances in uncovering the physiological and pathophysiological roles of aquaporins in the reproductive systems.  相似文献   

15.
Clinical update on renal aquaporins   总被引:1,自引:0,他引:1  
Following the discovery of the aquaporin-1 water channel over a decade ago, molecular techniques have been developed to examine the role of renal aquaporin water channels under numerous physiological and pathological conditions. The present article reviews current knowledge regarding the function and dysfunction of renal aquaporins in disorders of water metabolism.  相似文献   

16.
The role of aquaporins in root water uptake   总被引:42,自引:0,他引:42  
Javot H  Maurel C 《Annals of botany》2002,90(3):301-313
The capacity of roots to take up water is determined in part by the resistance of living tissues to radial water flow. Both the apoplastic and cell-to-cell paths mediate water transport in these tissues but the contribution of cell membranes to the latter path has long been difficult to estimate. Aquaporins are water channel proteins that are expressed in various membrane compartments of plant cells, including the plasma and vacuolar membranes. Plant aquaporins are encoded by a large multigene family, with 35 members in Arabidopsis thaliana, and many of these aquaporins show a cell-specific expression pattern in the root. Mercury acts as an efficient blocker of most aquaporins and has been used to demonstrate the significant contribution of water channels to overall root water transport. Aquaporin-rich membranes may be needed to facilitate intense water flow across root tissues and may represent critical points where an efficient and spatially restricted control of water uptake can be exerted. Roots, in particular, show a remarkable capacity to alter their water permeability over the short term (i.e. in a few hours to less than 2-3 d) in response to many stimuli, such as day/night cycles, nutrient deficiency or stress. Recent data suggest that these rapid changes can be mostly accounted for by changes in cell membrane permeability and are mediated by aquaporins. Although the processes that allow perception of environmental changes by root cells and subsequent aquaporin regulation are nearly unknown, the study of root aquaporins provides an interesting model to understand the regulation of water transport in plants and sheds light on the basic mechanisms of water uptake by roots.  相似文献   

17.
Aquaporins are members of the major intrinsic protein superfamily of integral membrane proteins which enable the transport of water, glycerol, and other solutes across membranes in various organisms. In microorganisms, the physiological role of aquaporins is not yet defined. We found a clear correlation between expression of the Candida albicans aquaporin-encoding gene AQY1 and freeze tolerance. A connection with the function for the aquaporin in the natural environment of C. albicans is, however, not obvious.  相似文献   

18.
水通道蛋白研究动态   总被引:7,自引:0,他引:7  
水通道蛋白是对水专一的通道蛋白,它普遍存在于动、植物及微生物中,不同水通道蛋白之间具有类似特征.哺乳动物中水通道蛋白主要分为六类,分布于水分代谢活跃的器官中;植物除了质膜上水通道蛋白外,液泡膜也存在着水通道蛋白,它们在植物生长,发育及胁迫适应中起着重要作用.目前有关水通道蛋白的详细的结构和功能信息主要来自对红细胞膜上水通道蛋白的研究,它由同源的四聚体组成,每个单体具有独立的水通道功能,四聚体在膜上分布具有不对称性,在膜内侧四聚体呈伸展状态,在膜外侧形成大的中心空腔.  相似文献   

19.

Background

The yeast Saccharomyces cerevisiae provides unique opportunities to study roles and regulation of aqua/glyceroporins using frontline tools of genetics and genomics as well as molecular cell and systems biology.

Scope of review

S. cerevisiae has two similar orthodox aquaporins. Based on phenotypes mediated by gene deletion or overexpression as well as on their expression pattern, the yeast aquaporins play important roles in key aspects of yeast biology: establishment of freeze tolerance, during spore formation as well as determination of cell surface properties for substrate adhesion and colony formation. Exactly how the aquaporins perform those roles and the mechanisms that regulate their function under such conditions remain to be elucidated. S. cerevisiae also has two different aquaglyceroporins. While the role of one of them, Yfl054c, remains to be determined, Fps1 plays critical roles in osmoregulation by controlling the accumulation of the osmolyte glycerol. Fps1 communicates with two osmo-sensing MAPK signalling pathways to perform its functions but the details of Fps1 regulation remain to be determined.

Major conclusions

Several phenotypes associated with aqua/glyceroporin function in yeasts have been established. However, how water and glycerol transport contribute to the observed effects is not understood in detail. Also many of the basic principles of regulation of yeast aqua/glyceroporins remain to be elucidated.

General significance

Studying the yeast aquaporins and aquaglyceroporins offers rich insight into the life style, evolution and adaptive responses of yeast and rewards us with discoveries of unexpected roles and regulatory mechanisms of members of this ancient protein family. This article is part of a Special Issue entitled Aquaporins.  相似文献   

20.

Background

All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina.

Scope of review

This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases.

Major conclusions

Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development.

General significance

Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号