首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 ??mol min−1 mg protein−1, respectively. The resolution of the diffracted crystal was estimated to be 2.4 Å and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors.  相似文献   

2.
alpha-Glycerophosphate dehydrogenase (EC 1.1.99.5) in mitochondria from liver of the triiodothyronine-treated rats is competitively inhibited by phosphoenolpyruvate, glyceraldehyde 3-phosphate and 3-phosphoglycerate, the apparent Ki values for phosphoenolpyruvate being 0.76 mM at pH 7.0, 1.7 mM at pH 7.4 and 3.5 mM at pH 7.7. The apparent Ki values for glyceraldehyde 3-phosphate and 3-phosphoglycerate are also pH-dependent. Other glycolytic intermediates, such as 2-phosphoglycerate, 2,3-diphosphoglycerate, pyruvate, glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-diphosphate did not alter significantly alpha-glycerophosphate dehydrogenase activity. Palmitoyl-CoA is a competitive inhibitor of this enzyme, with Ki value of about 30 micron.  相似文献   

3.
S-Methyl methanethiosulfonate (MMTS) is used in experimental biochemistry for alkylating thiol groups of protein cysteines. Its applications include mainly trapping of natural thiol-disulfide states of redox-sensitive proteins and proteins which have undergone S-nitrosylation. The reagent can also be employed as an inhibitor of enzymatic activity, since nucleophilic cysteine thiolates are commonly present at active sites of various enzymes. The advantage of using MMTS for this purpose is the reversibility of the formation of methylthio mixed disulfides, compared to irreversible alkylation using conventional agents. Additional benefits include good accessibility of MMTS to buried protein cysteines due to its small size and the simplicity of the protection and deprotection procedures. In this study we report examples of MMTS application in experiments involving oxidoreductase (glyceraldehyde-3-phosphate dehydrogenase, GAPDH), redox-regulated protein (recoverin) and cysteine protease (triticain-α). We demonstrate that on the one hand MMTS can modify functional cysteines in the thiol enzyme GAPDH, thereby preventing thiol oxidation and reversibly inhibiting the enzyme, while on the other hand it can protect the redox-sensitive thiol group of recoverin from oxidation and such modification produces no impact on the activity of the protein. Furthermore, using the example of the papain-like enzyme triticain-α, we report a novel application of MMTS as a protector of the primary structure of active cysteine protease during long-term purification and refolding procedures. Based on the data, we propose new lines of MMTS employment in research, pharmaceuticals and biotechnology for reversible switching off of undesirable activity and antioxidant protection of proteins with functional thiol groups.  相似文献   

4.
Koningic acid, a sesquiterpene antibiotic, is a specific inhibitor of the enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12). In the presence of 3 mM of NAD+, koningic acid irreversibly inactivated the enzyme in a time-dependent manner. The pseudo-first-order rate constant for inactivation (kapp) was dependent on koningic acid concentration in saturate manner, indicating koningic acid and enzyme formed a reversible complex prior to the formation of an inactive, irreversible complex; the inactivation rate (k 3) was 5.5.10(-2) s-1, with a dissociation constant for inactivation (Kinact) of 1.6 microM. The inhibition was competitive against glyceraldehyde 3-phosphate with a Ki of 1.1 microM, where the Km for glyceraldehyde 3-phosphate was 90 microM. Koningic acid inhibition was uncompetitive with respect to NAD+. The presence of NAD+ accelerated the inactivation. In its absence, the charcoal-treated NAD+-free enzyme showed a 220-fold decrease in apparent rate constant for inactivation, indicating that koningic acid sequentially binds to the enzyme next to NAD+. The enzyme, a tetramer, was inactivated when maximum two sulfhydryl groups, possibly cysteine residues at the active sites of the enzyme, were modified by the binding of koningic acid. These observations demonstrate that koningic acid is an active-site-directed inhibitor which reacts predominantly with the NAD+-enzyme complex.  相似文献   

5.
In addition to the ubiquitous mevalonate pathway, Streptomyces sp. strain CL190 utilizes the nonmevalonate pathway for isopentenyl diphosphate biosynthesis. The initial step of this nonmevalonate pathway is the formation of 1-deoxy-D-xylulose 5-phosphate (DXP) by condensation of pyruvate and glyceraldehyde 3-phosphate catalyzed by DXP synthase. The corresponding gene, dxs, was cloned from CL190 by using PCR with two oligonucleotide primers synthesized on the basis of two highly conserved regions among dxs homologs from six genera. The dxs gene of CL190 encodes 631 amino acid residues with a predicted molecular mass of 68 kDa. The recombinant enzyme overexpressed in Escherichia coli was purified as a soluble protein and characterized. The molecular mass of the enzyme was estimated to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 130 kDa by gel filtration chromatography, suggesting that the enzyme is most likely to be a dimer. The enzyme showed a pH optimum of 9.0, with a V(max) of 370 U per mg of protein and K(m)s of 65 microM for pyruvate and 120 microM for D-glyceraldehyde 3-phosphate. The purified enzyme catalyzed the formation of 1-deoxyxylulose by condensation of pyruvate and glyceraldehyde as well, with a K(m) value of 35 mM for D-glyceraldehyde. To compare the enzymatic properties of CL190 and E. coli DXP synthases, the latter enzyme was also overexpressed and purified. Although these two enzymes had different origins, they showed the same enzymatic properties.  相似文献   

6.
The regulation of CO(2) assimilation by intact spinach (Spinacia oleracea) chloroplasts by exogenous NADP-linked nonreversible d-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9) was investigated. This dehydrogenase mediated a glyceraldehyde 3-phosphate/glycerate 3-phosphate shuttle for the indirect transfer of NADPH from chloroplast to the external medium. The rate of NADPH formation in the medium reflected glyceraldehyde 3-phosphate efflux from the chloroplast. Increasing enzyme concentrations stimulated NADP reduction and, in turn, CO(2) fixation. Pyrophosphate increased CO(2) fixation by apparently inhibiting glyceraldehyde 3-phosphate efflux. Increasing the glycerate 3-phosphate concentration above 0.1 mm stimulated glyceraldehyde 3-phosphate efflux but inhibited CO(2) fixation. Addition of up to 0.5 mm orthophosphate enhanced both glyceraldehyde 3-phosphate efflux and CO(2) fixation while each was inhibited by higher orthophosphate concentrations. The mechanism by which the extent of glyceraldehyde 3-phosphate efflux regulated the rate of CO(2) fixation in chloroplasts was discussed.  相似文献   

7.
Dihydroxyacetone synthase, present in methanol-grown Candida boidinii (Kloeckera sp.) No. 2201, catalyzes the transfer of the glycolaldehyde group from xylulose 5-phosphate to formaldehyde to form glyceraldehyde 3-phosphate and dihydroxyacetone. This enzyme was purified to electrophoretic homogeneity and found to be a new type of transketolase. The molecular weight of the enzyme was estimated to be 190 000 by gel filtration. The enzyme appeared to be composed of four identical subunits (Mr, 55 000). Thiamin pyrophosphate and Mg2+ were required for the activity. The optimum pH was found to be 7.0. With xylulose 5-phosphate as the ketol-donor, aliphatic aldehydes (C1?C7), glycolaldehyde and glyceraldehyde were better acceptors than ribose 5-phosphate. The kinetic data were consistent with a ping-pong bi-bi mechanism. The Km values obtained were as follows: xylulose 5-phosphate, 1.0 nM; formaldehyde, 0.43 mM; glyceraldehyde 3-phosphate, 0.42 mM; and dihydroxyacetone, 0.52 mM.  相似文献   

8.
Phosphoglucose isomerase (PGI) EC 5.3.1.9, is a housekeeping enzyme that catalyzes the reversible isomerization of d-glucopyranose-6-phosphate and d-fructofuranose-6-phosphate. We have previously reported expression and multistep purification of recombinant PGI from Mycobacterium tuberculosis using conventional methods. We now describe an improved and simplified single step approach for purification of functionally active mycobacterial rPGI. The gene encoding PGI from M. tuberculosis H37Rv was cloned in bacterial expression vector pET22b(+). Expression of recombinant PGI with six-histidine-tag protein was observed both in the soluble fraction and inclusion bodies. Approximately 116mg of recombinant enzyme was purified to near homogeneity with approximately 80% yield from the soluble fraction of 1L culture at shake flask level using one step Ni-NTA affinity chromatography. The specific activity of the purified six-histidine-tagged recombinant PGI (rPGI-His(6)) was approximately 800U/mg of protein. The apparent K(m) value of the active recombinant protein followed Michaelis-Menten kinetics and was 0.27+/-0.03mM. K(i) for the competitive inhibitor 6-phosphogluconate was 0.75mM. The enzyme had pH optima in the range of pH 7.6-9.0 and was stable up to 55 degrees C. rPGI-His(6) exhibited enzyme activity almost equal to that of enzyme without histidine tag.  相似文献   

9.
Abstract

In order to be able to use triokinase for the enzymatic assay of tissue glyceraldehyde, we purified the enzyme to homogeneity from porcine kidney and characterized its biochemical properties. The purification was performed by polyethylene glycol fractionation, anion exchange chromatography, hydroxyapatite chromatography, hydrophobic chromatography, and gel filtration. The enzyme was purified 937-fold from the crude extract with an overall yield of 28 %. It had a molecular weight of 122,000 and was a dimer composed of identical subunits. The optimal pH and optimal temperature were 7.0 and 60 °C, respectively. This enzyme was stable when incubated at pH 7.0 at 40 °C for 1 h in the presence of 0.1 mg/ml bovine serum albumin. No loss of activity occurred for at least 1 month when the enzyme was stored at 4 °C in the presence of 1 mM dithiothreitol and 15 mM NaN3 under N2. Only three compounds, i.e., D-glyceraldehyde, dihydroxyacetone, and glycolaldehyde, acted as the substrate of the enzyme, having Km's of 11, <5, and 260 μM, respectively. The Km for ATP-Mg2+ was 68 μM. These results indicate that porcine kidney triokinase has properties advantageous for the glyceraldehyde assay using glyceraldehyde-3-phosphate dehydrogenase as a coupling enzyme.  相似文献   

10.

Genome sequence of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0632, annotated as glyceraldehyde-3-phosphate dehydrogenase, which is partially overlapped with phosphoglycerate kinase. In the phylogenetic tree, Pcal_0632 clustered with phosphorylating glyceraldehyde-3-phosphate dehydrogenases characterized from hyperthermophilic archaea and exhibited highest identity of 54% with glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus tokodaii. To examine biochemical function of the protein, Pcal_0632 gene was expressed in Escherichia coli and the gene product was purified. The recombinant enzyme catalyzed the conversion of glyceraldehyde 3-phosphate and inorganic phosphate into 1,3-bisphosphoglycerate utilizing both NAD and NADP as cofactor with a marked preference for NADP. The enzyme was highly stable against temperature and denaturants. Half-life of the enzyme was 60 min at 100 °C. It retained more than 60% of its activity even after an incubation of 72 h at room temperature in the presence of 6 M urea. High thermostability and resistance against denaturants make Pcal_0632 a novel glyceraldehyde-3-phosphate dehydrogenase.

  相似文献   

11.
Triosephosphate isomerase (TIM) has been proposed as a target for drug design. TIMs from several parasites have a cysteine residue at the dimer interface, whose derivatization with thiol-specific reagents induces enzyme inactivation and aggregation. TIMs lacking this residue, such as human TIM, are less affected. TIM from Entamoeba histolytica (EhTIM) has the interface cysteine residue and presents more than ten insertions when compared with the enzyme from other pathogens. To gain further insight into the role that interface residues play in the stability and reactivity of these enzymes, we determined the high-resolution structure and characterized the effect of methylmethane thiosulfonate (MMTS) on the activity and conformational properties of EhTIM. The structure of this enzyme was determined at 1.5A resolution using molecular replacement, observing that the dimer is not symmetric. EhTIM is completely inactivated by MMTS, and dissociated into stable monomers that possess considerable secondary structure. Structural and spectroscopic analysis of EhTIM and comparison with TIMs from other pathogens reveal that conformational rearrangements of the interface after dissociation, as well as intramonomeric contacts formed by the inserted residues, may contribute to the unusual stability of the derivatized EhTIM monomer.  相似文献   

12.
We report here the purification of a functionally active recombinant glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from Candida albicans. The GAPDH protein encoded by the TDH1 gene was obtained as a glutathione S-transferase fusion protein by expression in the vector pGEX-4T-3, and purified by affinity chromatography and thrombin digestion. The purified protein displays GAPDH enzymatic activity (42 micromol NADH min(-1) mg(-1)) as well as the laminin and fibronectin binding activities previously described. In addition, the recombinant GAPDH is covalently modified by NAD linkage; this modification is stimulated by nitric oxide and probably involves a sulfhydryl group (cysteine) residue since it is inhibited by Hg(2+) and cysteine.  相似文献   

13.
The sesquiterpene lactone koningic acid (heptelidic acid) irreversibly inactivated glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde 3-phosphate: NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) (GAPDH) and thus inhibits glycolysis. The koningic-acid-producing strain of Trichoderma koningii M3947 was shown to contain the koningic-acid-resistant GAPDH isozyme (GAPDH I) under conditions of koningic acid production. In peptone-rich medium, however, no koningic acid production was observed, and the koningic-acid-sensitive GAPDH isozyme (GAPDH II), in addition to the resistant enzyme, was produced. Both enzymes were tetramer with a molecular mass of 152 kDa (4 x 38 kDa) and lost enzyme activity when two of the four cysteine residues reacted with koningic acid. The apparent Km values of GAPDH I and II for glyceraldehyde 3-phosphate were 0.54 mM and 0.33 mM, respectively. The former isozyme was inhibited 50% by 1 mM koningic acid but not affected at 0.1 mM, while the latter isozyme was inhibited 50% at 0.01 mM. The immunochemical properties and partial amino acid sequences suggested that the two isozymes have different molecular structures. These results suggest that GAPDH I is responsible for the glycolysis in T. koningii when koningic acid is produced.  相似文献   

14.
The interaction of glyceraldehyde 3-phosphate dehydrogenase with microtubules has been studied by measurement of the amount of enzyme which co-assembles with in vitro reconstituted microtubules. The binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules is a saturable process; the maximum binding capacity is about 0.1 mole of enzyme bound per mole of assembled tubulin. Half saturation of microtubule binding sites is obtained at a concentration of glyceraldehyde 3-phosphate dehydrogenase of about 0.5 µM Glyceraldehyde 3-phosphate dehydrogenase (between 0.1 and 2 µM) induces a concentration-dependent increase a) in the turbidity of the microtubule suspension without alteration of the net amount of polymer formed and b) in the amount of microtubule protein polymers after cold microtubule disassembly. There is a linear relationship between the intensity of the glyceraldehyde 3-phosphate dehydrogenase-induced effects and the amount of microtubule-bound enzyme. The specificity of the association of glyceraldehyde 3-phosphate dehydrogenase to microtubules has been documented by copolymerization experiments. Assembly-disassembly cycles of purified microtubules in the presence of a crude liver soluble fraction results in the selective extraction of a protein with an apparent molecular weight of 35 000 identified as the monomer of glyceraldehyde 3-phosphate dehydrogenase by peptide mapping and immunoblotting.In conclusion, microtubules possess a limited number of binding sites for glyceraldehyde 3-phosphate dehydrogenase. The binding of the glycolytic enzyme to microtubules shows a considerable specificity and is associated with alterations of assembly and disassembly characteristics of microtubules.Abbreviations Mes 2(N-morpholinoethane) sulfonic acid - EGTA ethylene glycol bis (-aminoethyl-ester)N,N,N,N tetraacetic acid - EDTA thylene diamine tetraacetic acid  相似文献   

15.
Summary Partially purified flounder muscle (Pseudopleuronectus americanus) glyceraldehyde 3-phosphate dehydrogenase was immobilized on cyanogen bromide-activated Sepharose. The catalytic properties of the immobilized preparation were studied to determine if immobilization alters the kinetic properties of the native holoenzyme. The results indicate that the pH activity profile of immobilized glyceraldehyde 3-phosphate dehydrogenase did not differ from that of the native enzyme. The Michaelis constants (Km) for NAD and glyceraldehyde 3-phosphate were somewhat altered. The enzyme stability toward various inactivation treatments in the presence and absence of NAD was characterized and compared to that of he native enzyme. When either form of the enzyme was incubated with urea at concentrations greater than 2m, inactivation occurred very rapidly. Incubation in 0.1% trypsin for 60 minutes decreased the activity of immobilized glyceraldehyde 3-phosphate dehydrogenase by 45% and of the native soluble enzyme by 70%. The immobilized enzyme also exhibited considerably more stability than the native soluble enzyme when exposed to a temperature of 50° or to 20 mm ATP. In all cases NAD either greatly reduced the rate of inactivation or completely protected the enzyme from inactivation.  相似文献   

16.
Succinate semialdehyde dehydrogenase (SSADH) has been purified from potato tubers with 39% yield, 832-fold purification, and a specific activity of 6.5 units/mg protein. The final preparation was homogeneous as judged from native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration on Sepharose 6B gave a relative molecular mass (Mr) of 145,000 for the native enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a single polypeptide band of Mr 35,000. Thus the enzyme appears to be a tetramer of identical subunits. Chromatofocusing of the enzyme gave a pI of 8.7. The enzyme was maximally active at pH 9.0 in 100 mM sodium pyrophosphate buffer. In 100 mM Tris-HCl buffer, pH 9.0, the enzyme gave only 20% of the activity found in pyrophosphate buffer and had a shorter linear rate. The enzyme was specific for succinate semialdehyde (SSA) as substrate and could not utilize acetaldehyde, glyceraldehyde 3-phosphate, malonaldehyde, lactate, or ethanol as substrates. The enzyme was also specific for NAD+ as cofactor and NADP+ and 3-acetylpyridine adenine dinucleotide could not serve as cofactors. Potato SSADH had a Km of 4.6 microM for SSA when assayed in pyrophosphate buffer and was inhibited by that substrate at concentrations greater than 120 microM. The Km for NAD+ was found to be 31 microM. The enzyme required exogenous addition of a thiol compound for maximal activity and was inhibited by the thiol-directed reagents p-hydroxymercuribenzoate, dithionitrobenzoate, and N-ethyl-maleimide, by heavy metal ions Hg2+, Cu2+, Cd2+, and Zn2+, and by arsenite. These results indicate a requirement of a SH group for catalytic activity.  相似文献   

17.
1. The adsorption of [14C]carboxymethylated glyceraldehyde 3-phosphate dehydrogenase to negatively charged liposomes of phsphatidic acid/phosphatidylcholine (3:7, w/w) was investigated. The apparent association constant at I/2 = 60, pH 7.6, was 0.4 X 10(6)M-1. Adsorption decreased as ionic strength and pH were increased. 2. In the presence of negatively charged liposomes, the Km value for glyceraldehyde 3-phosphate of glyceraldehyde 3-phosphate dehydrogenase was increased and Vmax. decreased. In the presence of positively charged liposomes, the Km value for glyceraldehyde 3-phosphate decreased and there was no significant change in Vmax. Addition of Triton X-100 abolished the effect of both positively and negatively charged liposomes on the kinetic properties of the enzyme.  相似文献   

18.
The activity of phosphoglucose isomerase, its kinetic properties, and the effect of 6-phosphogluconate on its activity in the forward (glucose 6-phosphate----fructose 6-phosphate) and the reverse (fructose 6-phosphate----glucose 6-phosphate) reactions were determined in adult rat brain in vitro. The activity of phosphoglucose isomerase (in nmol/min/mg of whole brain protein) was 1,865 +/- 20 in the forward reaction and 1,756 +/- 32 in the reverse reaction at pH 7.5. It was 1,992 +/- 28 and 2,620 +/- 46, respectively, at pH 8.5. The apparent Km and Vmax of phosphoglucose isomerase were 0.593 +/- 0.031 mM and 2,291 +/- 61 nmol/min/mg of protein, respectively, for glucose 6-phosphate and 0.095 +/- 0.013 mM and 2,035 +/- 98 nmol/min/mg of protein, respectively, for fructose 6-phosphate. The activity of phosphoglucose isomerase was inhibited intensely and competitively by 6-phosphogluconate, with an apparent Ki of 0.048 +/- 0.005 mM for glucose 6-phosphate and 0.042 +/- 0.004 mM for fructose 6-phosphate as the substrate. With glucose 6-phosphate as the substrate, at concentrations from 0.05 to 0.5 mM, the activity of the enzyme was inhibited completely in the presence of 0.5-2.0 mM 6-phosphogluconate. With 0.05-0.2 mM fructose 6-phosphate as the substrate, it was inhibited greater than or equal to 85% at the same concentrations of the inhibitor. No significant changes were observed in the values of Km, Vmax, and Ki for phosphoglucose isomerase in the brain of 6-aminonicotinamide-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from the extremely halophilic archaebacterium Haloarcula vallismortis has been purified in a four step procedure to electrophoretic homogeneity. The enzyme is a tetramer with a relative molecular mass of 160000. It is strictly NAD+-dependent and exhibits its highest activity in 2 mol/l KCl at 45°C. Amino acid analysis and isoelectric focusing indicate an excess of acidic amino acids. Two parts of the primary sequence are reported. These peptides have been compared with glyceraldehyde 3-phosphate dehydrogenases from other archaebacteria, eubacteria and eucaryotes. The peptides show a high grade of similarity to glyceraldehyde 3-phosphate dehydrogenase from eucaryotes.Abbreviations BCA bicinchoninic acid - CTAB cetyltrimethyl ammonium bromide - DTE dithioerythritol - DTT dithiothreitol - GAP glyccraldehyde 3-phosphate - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   

20.
Glyceraldehyde 3-phosphate dehydrogenase exhibits half-site reactivity, the structural origin of which is obscure. Thermal inactivation kinetics, employed here as a probe for site-site heterogeneity in solution, show that green gram glyceraldehyde 3-phosphate dehydrogenase (in the absence and presence of phosphate and NAD+) loses activity in two distinct phases, each of which accounts for half of the initial activity. In the presence of substrate, glyceraldehyde 3-phosphate the relative amplitude of the slow phase increases, and at 0.06 mM glyceraldehyde 3-phosphate the time-course of inactivation corresponds to a single exponential decay. The data are consistent with a suggestion that glyceraldehyde 3-phosphate dehydrogenase may exist in two interconvertible conformations of different symmetry characteristics (C2 in equilibrium D2). The lower symmetry conformation (C2) predominates in the apoenzyme and in the presence of phosphate and NAD+. The higher symmetry conformation (D2) is stabilised by glyceraldehyde 3-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号