首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
In this study, we test the hypothesis that the symptoms of Pierce's Disease (PD) result from the occlusion of xylem conduits by the bacteria Xylella fastidiosa ( Xf ). Four treatments were imposed on greenhouse-grown Vitis vinifera cv. Chardonnay: well-watered and deficit-irrigated plants with and without petiole inoculation with Xf . The hydraulic conductance of the stem-petiole junction ( k jun) and leaves ( k leaf) were measured, and Xf concentrations were established by quantitative polymerase chain reaction (qPCR). Leaf hydraulic conductance decreased with increasing leaf scorch symptoms in both irrigation treatments. The positive relationship between Xf concentration and symptom formation in deficit-irrigated plants suggests that water-stress increases susceptibility to PD. In field-grown vines, water relations of symptomatic leaves were similar to naturally senescing leaves but differed from green control leaves. Overall, these results suggest that the development of PD symptoms represents a form of accelerated senescence as part of a systemic response of the plant to Xf infection.  相似文献   

2.
Invasive diseases present an increasing problem worldwide; however, genomic techniques are now available to investigate the timing and geographical origin of such introductions. We employed genomic techniques to demonstrate that the bacterial pathogen causing Pierce's disease of grapevine (PD) is not native to the US as previously assumed, but descended from a single genotype introduced from Central America. PD has posed a serious threat to the US wine industry ever since its first outbreak in Anaheim, California in the 1880s and continues to inhibit grape cultivation in a large area of the country. It is caused by infection of xylem vessels by the bacterium Xylella fastidiosa subsp. fastidiosa, a genetically distinct subspecies at least 15,000 years old. We present five independent kinds of evidence that strongly support our invasion hypothesis: 1) a genome-wide lack of genetic variability in X. fastidiosa subsp. fastidiosa found in the US, consistent with a recent common ancestor; 2) evidence for historical allopatry of the North American subspecies X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa; 3) evidence that X. fastidiosa subsp. fastidiosa evolved in a more tropical climate than X. fastidiosa subsp. multiplex; 4) much greater genetic variability in the proposed source population in Central America, variation within which the US genotypes are phylogenetically nested; and 5) the circumstantial evidence of importation of known hosts (coffee plants) from Central America directly into southern California just prior to the first known outbreak of the disease. The lack of genetic variation in X. fastidiosa subsp. fastidiosa in the US suggests that preventing additional introductions is important since new genetic variation may undermine PD control measures, or may lead to infection of other crop plants through the creation of novel genotypes via inter-subspecific recombination. In general, geographically mixing of previously isolated subspecies should be avoided.  相似文献   

3.
Xylella fastidiosa (Xf) is a xylem-limited bacterium that lives as a harmless endophyte in most plant species but is pathogenic in several agriculturally important crops such as coffee, citrus, and grapevine (Vitis vinifera L.). In susceptible cultivars of grapevine, Xf infection results in leaf scorch, premature leaf senescence, and eventually vine death; a suite of symptoms collectively referred to as Pierce's disease. A qPCR assay was developed to determine bacterial concentrations in planta and these concentrations were related to the development of leaf-scorch symptoms. The concentration of Xf in leaves of experimental grapevines grown in the greenhouse was similar to the concentration of Xf in leaves of naturally infected plants in the field. The distribution of Xf was patchy within and among leaves. Some whole leaves exhibited severe leaf-scorch symptoms in the absence of high concentrations of Xf. Despite a highly sensitive assay and a range of Xf concentrations from 10(2) to 10(9) cells g(-1) fresh weight, no clear relationship between bacterial population and symptom development during Pierce's disease was revealed. Thus, high and localized concentrations of Xf are not necessary for the formation of leaf-scorch symptoms. The results are interpreted as being consistent with an atiology that involves a systemic plant response.  相似文献   

4.
Strains of Xylella fastidiosa isolated from grape, almond, maple, and oleander were characterized by enterobacterial repetitive intergenic consensus sequence-, repetitive extragenic palindromic element (REP)-, and random amplified polymorphic DNA (RAPD)-PCR; contour-clamped homogeneous electric field (CHEF) gel electrophoresis; plasmid content; and sequencing of the 16S-23S rRNA spacer region. Combining methods gave greater resolution of strain groupings than any single method. Strains isolated from grape with Pierce's disease (PD) from California, Florida, and Georgia showed greater than previously reported genetic variability, including plasmid contents, but formed a cluster based on analysis of RAPD-PCR products, NotI and SpeI genomic DNA fingerprints, and 16S-23S rRNA spacer region sequence. Two groupings of almond leaf scorch (ALS) strains were distinguished by RAPD-PCR and CHEF gel electrophoresis, but some ALS isolates were clustered within the PD group. RAPD-PCR, CHEF gel electrophoresis, and 16S-23S rRNA sequence analysis produced the same groupings of strains, with RAPD-PCR resolving the greatest genetic differences. Oleander strains, phony peach disease (PP), and oak leaf scorch (OLS) strains were distinct from other strains. DNA profiles constructed by REP-PCR analysis were the same or very similar among all grape strains and most almond strains but different among some almond strains and all other strains tested. Eight of 12 ALS strains and 4 of 14 PD strains of X. fastidiosa isolated in California contained plasmids. All oleander strains carried the same-sized plasmid; all OLS strains carried the same-sized plasmid. A plum leaf scald strain contained three plasmids, two of which were the same sizes as those found in PP strains. These findings support a division of X. fastidiosa at the subspecies or pathovar level.  相似文献   

5.
Xylella fastidiosa is a xylem-limited bacterium that causes various diseases, among them Pierce's disease of grapevine (PD) and almond leaf scorch (ALS). PD and ALS have long been considered to be caused by the same strain of this pathogen, but recent genetic studies have revealed differences among X. fastidiosa isolated from these host plants. We tested the hypothesis that ALS is caused by PD and ALS strains in the field and found that both groups of X. fastidiosa caused ALS and overwintered within almonds after mechanical inoculation. Under greenhouse conditions, all isolates caused ALS and all isolates from grapes caused PD. However, isolates belonging to almond genetic groupings did not cause PD in inoculated grapes but systemically infected grapes with lower frequency and populations than those belonging to grape strains. Isolates able to cause both PD and ALS developed 10-fold-higher concentrations of X. fastidiosa in grapes than in almonds. In the laboratory, isolates from grapes overwintered with higher efficiency in grapes than in almonds and isolates from almonds overwintered better in almonds than in grapes. We assigned strains from almonds into groups I and II on the basis of their genetic characteristics, growth on PD3 solid medium, and bacterial populations within inoculated grapevines. Our results show that genetically distinct strains from grapes and almonds differ in population behavior and pathogenicity in grapes and in the ability to grow on two different media.  相似文献   

6.
Suppression subtractive hybridization was used to rapidly identify 18 gene differences between a citrus variegated chlorosis (CVC) strain and a Pierce's disease of grape (PD) strain of Xylella fastidiosa. The results were validated as being highly representative of actual differences by comparison of the completely sequenced genome of a CVC strain with that of a PD strain.  相似文献   

7.
Pierce's disease (PD) of grapevines is caused by a xylem-limited bacterium Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) that is transmitted to plants by xylem sap-feeding insects. The introduction of the sharpshooter leafhopper Homalodisca coagulata (Say) into California has initiated new PD epidemics in southern California. In laboratory experiments, the major characteristics of H. coagulata's transmission of X. fastidiosa to grapevines were the same as reported for other vectors: short or absent latent period; nymphs transmitted but lost infectivity after molting and regained infectivity after feeding on infected plants; and infectivity persisted in adults. Adult H. coagulata acquired and inoculated X. fastidiosa in <1 h of access time on a plant. Inoculation rates increased with access time, but acquisition efficiency (20% per individual) did not increase significantly beyond 6-h access. Estimated inoculation efficiency per individual per day was 19.6, 17.9, and 10.3% for experiments where plant access was 1, 2, and 4 d, respectively. Freshly molted adults and nymphs acquired and transmitted X. fastidiosa more efficiently than did older, field-collected insects. H. coagulata transmitted X. fastidiosa to 2-yr-old woody tissues of grapevines as efficiently as to green shoots. H. coagulata transmitted X. fastidiosa 3.5 mo after acquisition, demonstrating persistence of infectivity in adults. About half (14/29) of the H. coagulata from which we failed to culture X. fostidiosa from homogenized heads (with a detection threshold of 265 CFU/head) transmitted the pathogen to grape, and 17 of 24 from which we cultured X. fastidiosa transmitted.  相似文献   

8.
Xylella fastidiosa infects a wide range of hosts and causes serious diseases on some of them. The complete genomic sequences of both a citrus variegated chlorosis (CVC) and a Pierce's disease (PD) strain revealed two type I protein secretion plus two multidrug resistance efflux systems, and all evidently were dependent on a single tolC homolog. Marker exchange mutagenesis of the single tolC gene in PD strain Temecula resulted in a total loss of pathogenicity on grape. Importantly, the tolC- mutant strains were not recovered after inoculation into grape xylem, strongly indicating that multidrug efflux is critical to survival of this fastidious pathogen. Both survival and pathogenicity were restored by complementation using tolC cloned in shuttle vector pBBR1MCS-5, which was shown to replicate autonomously, without selection, for 60 days in Temecula growing in planta. These results also demonstrate the ability to complement mutations in X. fastidiosa.  相似文献   

9.
Xylella fastidiosa is a pathogenic bacterium found in several plants. These bacteria secrete extracellular proteases into the culture broth as visualized in sodium-dodecyl-sulfate polyacrylamide activity gels containing gelatin as a copolymerized substrate. Three major protein bands were produced by the citrus strain with molar masses (MM) of 122, 84 and 65 kDa. Grape strain 9,713 produced two bands of approximately 84 and 64 kDa. These organisms produced zones of hydrolysis in agar plates amended with gelatin, casein and hemoglobin. Gelatin was the best substrate for these proteases. Sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) activity gel indicated that the protease of Xylella fastidiosa from citrus and grape were completely inhibited by PMSF and partially inhibited by EDTA. The optimal temperature for protease activity was 30 degrees C with an optimal pH of 7.0. Among the proteolytic enzymes secreted by the phytopathogen, chitinase and beta-1,3-glucanase activities were also detected in cultures of Xylella fastidiosa (citrus). From these results, it is suggested that proteases produced by strains of Xylella fastidiosa from citrus and grape, belong to the serine- and metallo-protease group, respectively.  相似文献   

10.
11.
Diffusible signal factor (DSF) is a fatty acid signal molecule involved in regulation of virulence in several Xanthomonas species as well as Xylella fastidiosa. In this study, we identified a variety of bacteria that could disrupt DSF-mediated induction of virulence factors in Xanthomonas campestris pv. campestris. While many bacteria had the ability to degrade DSF, several bacterial strains belonging to genera Bacillus, Paenibacillus, Microbacterium, Staphylococcus, and Pseudomonas were identified that were capable of particularly rapid degradation of DSF. The molecular determinants for rapid degradation of DSF in Pseudomonas spp. strain G were elucidated. Random transposon mutants of strain G lacking the ability to degrade DSF were isolated. Cloning and characterization of disrupted genes in these strains revealed that carAB, required for the synthesis of carbamoylphosphate, a precursor for pyrimidine and arginine biosynthesis is required for rapid degradation of DSF in strain G. Complementation of carAB mutants restored both pyrimidine prototrophy and DSF degradation ability of the strain G mutant. An Escherichia coli strain harboring carAB of Pseudomonas spp. strain G degrades DSF more rapidly than the parental strain, and overexpression of carAB in trans increased the ability of Pseudomonas spp. strain G to degrade as compared with the parental strain. Coinoculation of X. campestris pv. campestris with DSF-degrading bacteria into mustard and cabbage leaves reduced disease severity up to twofold compared with plants inoculated only with the pathogen. Likewise, disease incidence and severity in grape stems coinoculated with Xylella fastidiosa and DSF-degrading strains were significantly reduced compared with plants inoculated with the pathogen alone. Coinoculation of grape plants with a carAB mutant of Pseudomonas spp. strain G complemented with carAB in trans reduced disease severity as well or better than the parental strain. These results indicate that overexpression of carAB in other endophytes could be a useful strategy of biocontrol for the control of diseases caused by plant pathogens that produce DSF.  相似文献   

12.
The specificity of pathogen–vector–host interactions is an important element of disease epidemiology. For generalist pathogens, different pathogen strains, vector species, or host species may all contribute to variability in disease incidence. One such pathogen is Xylella fastidiosa Wells et al., a xylem-limited bacterium that infects dozens of crop, ornamental, and native plants in the USA. This pathogen also has a diverse vector complex and multiple biologically distinct strains. We studied the implications of diversity in this pathogen–vector–host system, by quantifying variability in transmission efficiency of different X. fastidiosa strains (isolates from almond and grape genetic groups) for different host plants (grape, almond, and alfalfa) by two of the most important vectors in California: glassy-winged sharpshooter [ Homalodisca vitripennis (Germar)] and green sharpshooter ( Draeculacephala minerva Ball) (both Hemiptera: Cicadellidae). Transmission of isolates of the almond strain by H. vitripennis did not differ significantly, whereas transmission varied significantly among isolates from the grape strain (15–90%). Host plant species did not affect H. vitripennis transmission. Conversely, D. minerva efficiency was mediated by both host plant species and pathogen strain. No acquisition of an almond isolate occurred regardless of plant type (0/122), whereas acquisition of a grape isolate from alfalfa was 10-fold higher than from grape or almond plants. These results suggest that pathogen, vector, and host diversity impose contingencies on the transmission ecology of this complex disease system. Studies aimed at the development of management strategies for X. fastidiosa diseases should consider the complexity of these interactions as they relate to disease spread.  相似文献   

13.
Xylella fastidiosa is the causal agent of citrus variegated chlorosis and Pierce's disease which are the major threat to the citrus and wine industries. The most accepted hypothesis for Xf diseases affirms that it is a vascular occlusion caused by bacterial biofilm, embedded in an extracellular translucent matrix that was deduced to be the exopolysaccharide fastidian. Fourier transform infrared spectroscopy analysis demonstrated that virulent cells which form biofilm on glass have low fastidian content similar to the weak virulent ones. This indicates that high amounts of fastidian are not necessary for adhesion. In this paper we propose a kinetic model for X. fastidiosa adhesion, biofilm formation, and virulence based on electrostatic attraction between bacterial surface proteins and xylem walls. Fastidian is involved in final biofilm formation and cation sequestration in dilute sap.  相似文献   

14.
Citrus variegated chlorosis (CVC) is a disease of the sweet orange [Citrus sinensis (L.)], which is caused by Xylella fastidiosa subsp. pauca, a phytopathogenic bacterium that has been shown to infect all sweet orange cultivars. Sweet orange trees have been occasionally observed to be infected by Xylella fastidiosa without evidencing severe disease symptoms, whereas other trees in the same grove may exhibit severe disease symptoms. The principal endophytic bacterial species isolated from such CVC-asymptomatic citrus plants is Curtobacterium flaccumfaciens. The Madagascar periwinkle [Citrus sinensis (L.)] is a model plant which has been used to study X. fastidiosa in greenhouse environments. In order to characterize the interactions of X. fastidiosa and C. flaccumfaciens, periwinkle plants were inoculated separately with C. flaccumfaciens, X. fastidiosa, and both bacteria together. The number of flowers produced by the plants, the heights of the plants, and the exhibited disease symptoms were evaluated. PCR-primers for C. flaccumfaciens were designed in order to verify the presence of this endophytic bacterium in plant tissue, and to complement an existing assay for X. fastidiosa. These primers were capable of detecting C. flaccumfaciens in the periwinkle in the presence of X. fastidiosa. X. fastidiosa induced stunting and reduced the number of flowers produced by the periwinkle. When C. flaccumfaciens was inoculated together with X. fastidiosa, no stunting was observed. The number of flowers produced by our doubly- inoculated plants was an intermediate between the number produced by the plants inoculated with either of the bacteria separately. Our data indicate that C. flaccumfaciens interacted with X. fastidiosa in C. roseus, and reduced the severity of the disease symptoms induced by X. fastidiosa. Periwinkle is considered to be an excellent experimental system by which the interaction of C. flaccumfaciens and other endophytic bacteria with X. fastidiosa can be studied.  相似文献   

15.
Xylella fastidiosa infects a wide range of plant hosts and causes economically serious diseases, including Pierce's disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 is infectious to grapevines but does not cause symptoms. The draft genome of EB92-1 reveals that it may be missing 10 potential pathogenicity effectors.  相似文献   

16.
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.  相似文献   

17.
Characteristic symptoms of Pierce's disease (PD) in grapevines (Vitis vinifera L.) were observed in 2002 in the major grape production fields of central Taiwan. Disease severity in vineyards varied, and all investigated grape cultivars were affected. Diseased tissues were collected from fields for subsequent isolation and characterization of the causal agent of the disease (Xylella fastidiosa). Koch's postulates were fulfilled by artificially inoculating two purified PD bacteria to grape cultivars Kyoho, Honey Red and Golden Muscat. The inoculated plants developed typical leaf‐scorching symptoms, and similar disease severity developed in the three cultivars from which the bacterium was readily re‐isolated, proving that the leaf scorch of grapevines in Taiwan is caused by the fastidious X. fastidiosa. This confirmed PD of grapevines is also the first report from the Asian Continent. Phylogenetic analyses were performed by comparing the 16S rRNA gene and 16S‐23S rRNA internal transcribed spacer region (16S‐23S ITS) of 12 PD strains from Taiwan with the sequences of 13 X. fastidiosa strains from different hosts and different geographical areas. Results showed that the PD strains of Taiwan were closely related to the American X. fastidiosa grape strains but not to the pear strains of Taiwan, suggesting that the X. fastidiosa grape and pear strains of Taiwan may have evolved independently from each other.  相似文献   

18.
Cell-to-cell signaling mediated by a fatty acid diffusible signaling factor (DSF) is central to the regulation of the virulence of Xylella fastidiosa. DSF production by X. fastidiosa is dependent on rpfF and, although required for insect colonization, appears to reduce its virulence to grape. To understand what aspects of colonization of grape are controlled by DSF in X. fastidiosa and, thus, those factors that contribute to virulence, we assessed the colonization of grape by a green fluorescent protein-marked rpfF-deficient mutant. The rpfF-deficient mutant was detected at a greater distance from the point of inoculation than the wild-type strain at a given sampling time, and also attained a population size that was up to 100-fold larger than that of the wild-type strain at a given distance from the point of inoculation. Confocal laser-scanning microscopy revealed that approximately 10-fold more vessels in petioles of symptomatic leaves harbored at least some cells of either the wild type or rpfF mutant when compared with asymptomatic leaves and, thus, that disease symptoms were associated with the extent of vessel colonization. Importantly, the rpfF mutant colonized approximately threefold more vessels than the wild-type strain. Although a wide range of colony sizes were observed in vessels colonized by both the wild type and rpfF mutant, the proportion of colonized vessels harboring large numbers of cells was significantly higher in plants inoculated with the rpfF mutant than with the wild-type strain. These studies indicated that the hypervirulence phenotype of the rpfF mutant is due to both a more extensive spread of the pathogen to xylem vessels and unrestrained multiplication within vessels leading to blockage. These results suggest that movement and multiplication of X. fastidiosa in plants are linked, perhaps because cell wall degradation products are a major source of nutrients. Thus, DSF-mediated cell-to-cell signaling, which restricts movement and colonization of X. fastidiosa, may be an adaptation to endophytic growth of the pathogen that prevents the excessive growth of cells in vessels.  相似文献   

19.
Xylella fastidiosa Wells is a bacterial pathogen that causes a variety of plant diseases, including Pierce's disease (PD) of grapevine, almond leaf scorch, alfalfa dwarf, citrus variegated chlorosis, and oleander leaf scorch (OLS). Numerous strains of this pathogen have been genetically characterized, and several different strains occur in the United States. The dominant vector in southern California is the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae). The high mobility of this insect, and its use of large numbers of host plant species, provides this vector with ample exposure to multiple strains of X. fastidiosa during its lifetime. To learn more about the ability of this vector to acquire, retain, and transmit multiple strains of the pathogen, we developed a polymerase chain reaction (PCR)-based method to detect and differentiate strains of X. fastidiosa present in individual glassy-winged sharpshooter adults. Insects were sequentially exposed to plants infected with a PD strain in grapevine and an OLS strain in oleander. After sequential exposure, a few insects tested positive for both strains (7%); however, in most cases individuals tested positive for only one strain (29% PD, 41% OLS). In transmission studies, individual adults transmitted either the PD or OLS strain of the pathogen at a rate (39%) similar to that previously reported after exposure to a single strain, but no single individual transmitted both strains of the pathogen. PD and OLS strains of X. fastidiosa remained detectable in glassy-winged sharpshooter, even when insects were fed on a plant species that was not a host of the strain for 1 wk.  相似文献   

20.
Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号