首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands.  相似文献   

2.
3.
4.
5.
Metabolism of vitamin E is initiated by cytochrome P450 (CYP) enzymes usually involved in the metabolism of xenobiotics. Like other CYP substrates, vitamin E induced a reporter gene under the control of the pregnane X receptor (PXR) which regulates the expression of CYPs including CYP3A4. gamma-Tocotrienol, the most effective PXR activator, also induced endogenous CYP3A4 mRNA in HepG2 cells. Since these findings imply an interference of vitamin E with drug metabolism it was deemed necessary to investigate their in vivo relevance. Therefore, mice were grown for 3 months with alpha-tocopherol-deficient, -adequate, and -supranutritional diet, i.e. 2, 20 and 200 mg RRR-alpha-tocopheryl acetate/kg diet, respectively. Half of them received 250 microg gamma-tocotrienol/day for the last 7 days. After 3 months, hepatic levels of Cyp3a11 mRNA, the murine homolog to human CYP3A4, were about 2.5-fold higher in the 20 and 200 mg alpha-tocopherol groups than in the 2 mg group. After feeding 200 mg alpha-tocopherol for 9 months, Cyp3a11 mRNA was 1.7-fold higher than after 3 months. In contrast, gamma-tocotrienol did not induce Cyp3a11 mRNA. This could be explained by its high metabolism as demonstrated by the 20- to 25-fold increase in the urinary excretion of gamma-CEHC, the final metabolite of gamma-tocotrienol degradation. In conclusion, alpha-tocopherol maintains an adequate level of xenobiotic-metabolizing enzymes. If fed in supranutritional dosages, especially for longer times, alpha-tocopherol induces Cyp3a11 to levels which might interfere with drug metabolism.  相似文献   

6.
The bile salt export pump (BSEP/Bsep; gene symbol ABCB11/Abcb11) translocates bile salts across the hepatocyte canalicular membrane into bile in humans and mice. In humans, mutations in the ABCB11 gene cause a severe childhood liver disease known as progressive familial intrahepatic cholestasis type 2. Targeted inactivation of mouse Bsep produces milder persistent cholestasis due to detoxification of bile acids through hydroxylation and alternative transport pathways. The purpose of the present study was to determine whether functional expression of hepatic cytochrome P450 (CYP) and microsomal epoxide hydrolase (mEH) is altered by Bsep inactivation in mice and whether bile acids regulate CYP and mEH expression in Bsep ?/? mice. CYP expression was determined by measuring protein levels of Cyp2b, Cyp2c and Cyp3a enzymes and CYP-mediated activities including lithocholic acid hydroxylation, testosterone hydroxylation and alkoxyresorufin O-dealkylation in hepatic microsomes prepared from female and male Bsep ?/? mice fed a normal or cholic acid (CA)-enriched diet. The results indicated that hepatic lithocholic acid hydroxylation was catalyzed by Cyp3a/Cyp3a11 enzymes in Bsep ?/? mice and that 3-ketocholanoic acid and murideoxycholic acid were major metabolites. CA feeding of Bsep ?/? mice increased hepatic Cyp3a11 protein levels and Cyp3a11-mediated testosterone 2β-, 6β-, and 15β-hydroxylation activities, increased Cyp2b10 protein levels and Cyp2b10-mediated benzyloxyresorufin O-debenzylation activity, and elevated Cyp2c29 and mEH protein levels. We propose that bile acids upregulate expression of hepatic Cyp3a11, Cyp2b10, Cyp2c29 and mEH in Bsep ?/? mice and that Cyp3a11 and multidrug resistance-1 P-glycoproteins (Mdr1a/1b) are vital components of two distinct pathways utilized by mouse hepatocytes to expel bile acids.  相似文献   

7.
AA (arachidonic acid) hydroxylation to 20-HETE (20-hydroxyeicosatetraenoic acid) influences renal vascular and tubular function. To identify the CYP (cytochrome P450) isoforms catalysing this reaction in the mouse kidney, we analysed the substrate specificity of Cyp4a10, 4a12a, 4a12b and 4a14 and determined sex- and strain-specific expressions. All recombinant enzymes showed high lauric acid hydroxylase activities. Cyp4a12a and Cyp4a12b efficiently hydroxylated AA to 20-HETE with V(max) values of approx. 10 nmol x nmol(-1) x min(-1) and K(m) values of 20-40 microM. 20-Carboxyeicosatetraenoic acid occurred as a secondary metabolite. AA hydroxylase activities were approx. 25-75-fold lower with Cyp4a10 and not detectable with Cyp4a14. Cyp4a12a and Cyp4a12b also efficiently converted EPA (eicosapentaenoic acid) into 19/20-OH- and 17,18-epoxy-EPA. In male mice, renal microsomal AA hydroxylase activities ranged between approx. 100 (NMRI), 45-55 (FVB/N, 129 Sv/J and Balb/c) and 25 pmol x min(-1) x mg(-1) (C57BL/6). The activities correlated with differences in Cyp4a12a protein and mRNA levels. Treatment with 5alpha-dihydrotestosterone induced both 20-HETE production and Cyp4a12a expression more than 4-fold in male C57BL/6 mice. All female mice showed low AA hydroxylase activities (15-25 pmol x min(-1) x mg(-1)) and very low Cyp4a12a mRNA and protein levels, but high Cyp4a10 and Cyp4a14 expression. Renal Cyp4a12b mRNA expression was almost undetectable in both sexes of all strains. Thus Cyp4a12a is the predominant 20-HETE synthase in the mouse kidney. Cyp4a12a expression determines the sex- and strain-specific differences in 20-HETE generation and may explain sex and strain differences in the susceptibility to hypertension and target organ damage.  相似文献   

8.
Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7alpha-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12alpha-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19-23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7alpha-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool.  相似文献   

9.
We studied bile acid and cholesterol metabolism in insulin-dependent diabetes utilizing genetically modified mice unable to synthesize cholic acid (Cyp8b1-/-). Diabetes was induced in Cyp8b1-/- and wild type animals (Cyp8b1+/+) by alloxan, and the mice were fed normal or cholesterol-enriched diet for 10 weeks. The serum levels of cholesterol were strongly increased in diabetic Cyp8b1+/+ mice fed cholesterol, while diabetic Cyp8b1-/- mice did not show any aberrations regardless of the diet. Diabetic cholesterol-fed Cyp8b1+/+ mice had much higher biliary cholesterol and cholesterol saturation index than all other groups, their bile contained a large number of cholesterol crystals, and their canalicular cholesterol transporter Abcg5/g8 mRNA levels were much higher. Cyp7a1 mRNA levels were similar in all diabetic mice but higher compared to non-diabetic animals. The results indicate a critical role for cholic acid for the development of hypercholesterolemia and gallstones in our animal model.  相似文献   

10.
Peroxisome proliferator–activated receptor delta (PPARδ) agonists have been shown to exert beneficial effects in liver disease and reduce total bile acid levels. The mechanism(s) whereby PPARδ agonism reduces bile acid levels are, however, unknown, and therefore the aim of the present study was to investigate the molecular pathways responsible for reducing bile acid synthesis in hepatocytes, following treatment with the selective PPARδ agonist, seladelpar. We show that administration of seladelpar to WT mice repressed the liver expression of cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme for bile acid synthesis, and decreased plasma 7α-hydroxy-4-cholesten-3-one (C4), a freely diffusible metabolite downstream of Cyp7a1. In primary mouse hepatocytes, seladelpar significantly reduced the expression of Cyp7a1 independent of the nuclear bile acid receptor, Farnesoid X receptor. In addition, seladelpar upregulated fibroblast growth factor 21 (Fgf21) in mouse liver, serum, and in cultured hepatocytes. We demonstrate that recombinant Fgf21 protein activated the c-Jun N-terminal kinase (JNK) signaling pathway and repressed Cyp7a1 gene expression in primary hepatocytes. The suppressive effect of seladelpar on Cyp7a1 expression was blocked by a JNK inhibitor as well as in the absence of Fgf21, indicating that Fgf21 plays an indispensable role in PPARδ-mediated downregulation of Cyp7a1. Finally, reduction of CYP7A1 expression by seladelpar was confirmed in primary human hepatocytes. In conclusion, we show that seladelpar reduces bile acid synthesis via an FGF21-dependent mechanism that signals at least partially through JNK to repress CYP7A1.  相似文献   

11.
Estrogen metabolism is suggested to play an important role in estrogen-induced breast carcinogenesis. Epidemiologic studies suggest that diets rich in phytoestrogens are associated with a reduced risk of breast cancer. Phytoestrogens are biologically active plant compounds that structurally mimic 17beta-estradiol (E(2)). We hypothesize that phytoestrogens, may provide protection against breast carcinogenesis by altering the expression of estrogen-metabolizing enzymes cytochrome P450 1A1 (Cyp1A1) and 1B1 (Cyp1B1). Cyp1A1 and Cyp1B1 are responsible for the metabolism of E(2) to generate 2-hydroxyestradiol (2-OHE(2)) and 4-hydroxyestradiol (4-OHE(2)), respectively. Studies suggest that 2-OHE(2) and 2-methoxyestradiol may protect against breast carcinogenesis, while 4-OHE(2) is carcinogenic in rodent models. Thus, agents that increase the metabolism of E(2) by Cyp1A1 to produce 2-OHE(2) may have chemoprotective properties. The human immortalized non-neoplastic breast cell line MCF10F was treated with quercetin at 10 and 50muM concentrations for time points ranging from 3 to 48h. Total RNA and protein were isolated. Real-time PCR was used to measure the expression of Cyp1A1 and Cyp1B1 mRNA. Quercetin treatment produced differential regulation of Cyp1A1 and Cyp1B1 mRNA expression in a time- and dose-dependent manner. Treatment with 10 and 50 microM doses of quercetin produced 6- and 11-times greater inductions of Cyp1A1 mRNA over Cyp1B1 mRNA, respectively. Furthermore, quercetin dramatically increased Cyp1A1 protein levels and only slightly increased Cyp1B1 protein levels in MCF10F cells. Thus, our data suggest that phytoestrogens may provide protection against breast cancer by modulating expression of estrogen-metabolizing genes such that production of the highly carcinogenic estrogen metabolite 4-OHE(2) by Cyp1B1 is reduced and the production of the less genotoxic 2-OHE(2) by Cyp1A1 is increased.  相似文献   

12.
A quantitative RT-PCR assay has been developed that is able to measure the mRNA content of the major human CYPs (1A1, 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5). The technique is highly specific, reproducible, rapid, and sensitive enough to quantitate low and high abundant mRNAs. The PCR primers were selected to specifically match each CYP mRNA, to have a very close annealing temperature, and to render PCR products of similar sizes. The PCR conditions were designed to allow the simultaneous measurement of the various human liver CYPs in a single run. To achieve precise and reproducible quantitation of each cytochrome mRNA, a external standard (luciferase mRNA) is added to the probes to monitor the efficiency of the RT step. The degree of amplification is estimated using appropriate cDNA standards and quantitation of the amplified products by fluorescent measurement. This assay can be used to quantify the most relevant CYPs in human liver and cultured human hepatocytes. CYPs 3A4 and 2E1 were the most abundant mRNAs in human liver (2.5 and 1.7 x 10(8) molecules/microgram of total RNA respectively), whereas 1A1 and 2D6 were the least abundant isoforms (1.2 and 2.1 x 10(6) molecules/microgram of total RNA). A similar pattern was also found in short-term cultured human hepatocytes. This technique is also suitable for assessing CYP mRNA induction by xenobiotics. Cells exposed to 3-methylcholanthrene showed a characteristic increased expression of CYP1A2 and 1A1 mRNAs. Upon incubation with phenobarbital and rifampin (rifampicin), human hepatocytes increased CYP 2B6, 3A4, and 3A5 among others.  相似文献   

13.
The effect of the synthetic glucocorticoid, dexamethasone, and phenobarbital upon the expression of Cyp2b9 and Cyp2b10, major CYP2B subfamilies in the mouse, was differentiated in C57BL/6 mouse liver and hepatocytes in primary culture. Overall expression was higher in the untreated female liver than in the male liver. More Cyp2b9 than Cyp2b10 mRNA was present in the female liver, whereas the level of Cyp2b10 was higher in the male. Phenobarbital increased Cyp2b10 expression more than did Cyp2b9 in both sexes. Treatment with dexamethasone markedly induced Cyp2b10 expression dose dependently, but simultaneously suppressed Cyp2b9 in both sexes. Evidence of this was obtained both in vivo and in hepatocyte culture. Furthermore, the existence of at least two unknown species of CYP2B, whose expressions were either increased or decreased by dexamethasone was suggested. Adrenalectomy increased the expression of Cyp2b9 and Cyp2b10 mRNAs, especially that of Cyp2b9 in the male liver. In addition, the expression of one unknown species which was constitutively suppressed increased in adrenalectomized male mice. That the treatment of dexamethasone or adrenalectomy altered the expression of CYP2B subfamilies suggests that endogenous glucocorticoid hormone plays a basic role in the constitutive expression of cytochrome P450. Furthermore, the sex-related difference in the expression of Cyp2b9 and Cyp2b10 suggests that sex-dependent secretion of endogeneous modulating factors is involved in the regulatory pathway.  相似文献   

14.
目的研究小檗碱对2型糖尿病中国地鼠肝脏葡萄糖激酶(GcK)、葡萄糖-6-磷酸酶(G6P)和磷酸烯醇式丙酮酸羧激酶(PEPCK)mRNA表达的影响,探讨小檗碱影响糖代谢的分子机制。方法以高脂高热量饲料喂养结合腹腔注射小剂量链脲佐菌素(STZ)的方法制作2型糖尿病中国地鼠模型,成模后随机分成模型组、小檗碱组、二甲双胍组,各药干预9周。同时设立对照组。观察小檗碱疗效及对肝脏GcK、G6P、PEPCK mRNA表达的影响。结果与模型组相比,小檗碱增强胰岛素敏感性,降低血糖血脂,增高肝脏GcK的mRNA表达,降低肝脏G6P、PEPCK mRNA的表达。结论小檗碱降低2型糖尿病血糖的作用机制可能与提高肝脏GcK mRNA的表达和降低G6P、PEPCK mRNA的表达有关。  相似文献   

15.
16.
Hepatic levels of the cytochrome P450 (CYP) proteins 2E1 and 4A are often increased in obesity, diabetes and fasting. In such states of nutritional imbalance, CYPs 2E1 and 4A may play a more significant role in fatty acid oxidation. In order to more fully characterize the regulation of CYP2E1 and CYP4A in obesity and obesity-related (type II) diabetes, we analyzed the hepatic expression of CYP2E1 and CYP4A in ob/ob mice which are leptin deficient, and fa/fa Zucker rats which have defective leptin receptor function. CYP2E1 protein and mRNA were either unchanged or reduced in both models. Conversely, expression of murine Cyp4a10 and 4a14 in the obese mice, and 4A2 in the male fatty Zucker rat, were greatly increased. The levels of other CYP4As were either unchanged or reduced. These results show that CYP2E1 is not inevitably increased by obesity and diabetes and indicate differential regulation of CYP4A subfamily genes in rodent models. Further, they implicate leptin receptor signaling as a factor that may modulate expression of CYP gene products involved in fatty acid oxidation.  相似文献   

17.
The CYP1A1, CYP1A2, and CYP1B1 enzymes are inducible by benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); metabolism of BaP by these enzymes leads to electrophilic intermediates and genotoxicity. Throughout the gastrointestinal (GI) tract, we systematically compared basal and inducible levels of the CYP1 mRNAs by Q-PCR, and localized the CYP1 proteins by immunohistochemistry. Cyp1(+/+) wild-type were compared with the Cyp1a1(-/-), Cyp1a2(-/-), and Cyp1b1(-/-) single-knockout and Cyp1a1/1b1(-/-) and Cyp1a2/1b1(-/-) double-knockout mice. Oral BaP was compared with intraperitoneal TCDD. In general, maximal CYP1A1 mRNA levels were 3-10 times greater than CYP1B1, which were 3-10 times greater than CYP1A2 mRNA levels. Highest inducible concentrations of CYP1A1 and CYP1A2 occurred in proximal small intestine, whereas the highest basal and inducible levels of CYP1B1 mRNA occurred in esophagus, forestomach, and glandular stomach. Ablation of either Cyp1a2 or Cyp1b1 gene resulted in a compensatory increase in CYP1A1 mRNA - but only in small intestine. Also in small intestine, although BaP- and TCDD-mediated CYP1A1 inductions were roughly equivalent, oral BaP-mediated CYP1A2 mRNA induction was approximately 40-fold greater than TCDD-mediated CYP1A2 induction. CYP1B1 induction by TCDD in Cyp1(+/+) and Cyp1a2(-/-) mice was 4-5 times higher than that by BaP; however, in Cyp1a1(-/-) animals CYP1B1 induction by TCDD or BaP was approximately equivalent. CYP1A1 and CYP1A2 proteins were generally localized nearer to the lumen than CYP1B1 proteins, in both squamous and glandular epithelial cells. These GI tract data suggest that the inducible CYP1A1 enzyme, both in concentration and in location, might act as a "shield" in detoxifying oral BaP and, hence, protecting the animal.  相似文献   

18.
Expression of P-450 (Cyp) enzymes is reduced in liver during the acute phase response, contributing to the decrease in bile acid levels and drug metabolism during infection. Nuclear hormone receptors CAR and PXR are key transactivators of Cyp2b and Cyp3a genes, respectively. Injection of bacterial lipopolysaccharide (LPS) induced the expected reduction in Cyp2b10 and Cyp3a mRNA levels in mouse liver. These decreases were associated with a marked reduction in CAR and PXR mRNA levels within 4 h following treatment. LPS-induced CAR and PXR repression were dose-dependent and sustained for at least 16 h. LPS treatment also reversed the up-regulation of Cyp3a in mice pre-treated with PXR ligand RU486. In addition, we observed a concomitant decrease in RXR (retinoid X receptor) mRNA levels, the obligatory partner of both CAR and PXR for high affinity binding to DNA. These findings represent one possible molecular mechanism underlying sepsis-induced repression of Cyp enzymes.  相似文献   

19.
BackgroundZn is an essential trace element for vertebrates, and Zn uptake and transport is related with the ZIP family of Zn transporters. Meantime, Zn also influenced the expression of ZIP family members.MethodsWe cloned and characterized the full-length cDNA sequences of ten Zn transport-relevant genes (ZIP1, ZIP3, ZIP6, ZIP7, ZIP8, ZIP9, ZIP10, ZIP11, ZIP13 and ZIP14) from yellow catfish Pelteobagrus fulvidraco, investigated their mRNA tissue expression. These ZIP mRNA expression was also assessed in the primary hepatocytes and intestinal epithelial cells of yellow catfish in response to three Zn levels (0, 30 μM and 60 μM, respectively).ResultsAll these genes shared the similar domains with the corresponding members in mammals. The mRNA expression of the ten ZIP genes was detected in nine-tested tissues, but variable among these tissues. Flow cytometry analysis and confocal microscopy observation indicated that intracellular free Zn2+ concentration in hepatocytes and intestinal epithelial cells increased with increasing Zn incubation concentration at both 24 h and 48 h. Zn incubation differentially influenced mRNA levels of ZIP transporters in the hepatocytes and intestinal epithelial cells, in a time- and cells-dependent manners. In the hepatocytes, at 24 h, compared to the control, Zn addition down-regulated mRNA levels of ZIP1, ZIP3, ZIP6, ZIP7, ZIP8, ZIP9, ZIP11 and ZIP14; however, ZIP10 mRNA levels were lower in 60 μM Zn group than those in the control and 30 μM Zn group. At 48 h, mRNA levels of ZIP1, ZIP6, ZIP7, ZIP9, ZIP10 and ZIP14 declined with increasing Zn incubation concentrations; ZIP3 mRNA levels were the lowest in 60 μM Zn group and showed no significant differences between the control and 30 μM Zn group. In the intestinal epithelial cells, at 24 h, Zn addition down-regulated mRNA levels of ZIP1, ZIP6, ZIP7, ZIP8, ZIP9, ZIP10, ZIP11, ZIP13 and ZIP14; ZIP3 mRNA levels were lower in 60 μM Zn group than those in the control and 30 μM Zn group. At 48 h, Zn addition up-regulated mRNA levels of ZIP6 and ZIP9, but down-regulated mRNA levels of ZIP8, ZIP10 and ZIP13. ZIP7, ZIP11 and ZIP14 mRNA abundances were the lowest in 60 μM Zn group and showed no significant differences between the control and 30 μM Zn group.ConclusionFor the first time, our study characterized ten ZIP family members in yellow catfish, explored their mRNA tissue expression. Their regulation to Zn addition were also investigated in the hepatocytes and intestinal epithelial cells of yellow catfish. Our study revealed the mechanism of cells exposed to Zn addition and provided novel insights for the regulatory mechanism of Zn homeostasis.  相似文献   

20.
Primary hepatocytes (PHs) are considered the ‘gold standard’ in drug screening owing to their ability to express many drug-metabolizing enzymes and transporters. Culturing hepatocytes and maintaining their fate in vitro is a major issue since last decade. The main problem with in vitro hepatocytes culture is that they rapidly lose their hepatic morphology and liver-specific functions in culture. Herein, we isolated rat PHs, and cultured them in monolayers (2-D) and spheroids (3-D). The 2-D-cultured PHs exhibited elongated morphology, whereas the 3-D-cultured PHs exhibited spheroid morphology with gradual diameter decrease until 7 days. After 7 days of in vitro culture, PHs were analyzed for the expression of hepatic (Alb, Tf, and Afp) and apoptotic markers (Bax and Bcl2), and co-expression of CYP3A1 and Abumin after 2 and 7 days. Furthermore, in both cultures, PHs were induced with 3-methylcholanthrene (3-MC, Cyp1a-specific inducer) and dexamethasone (Cyp3a-specific inducer) for 48 and 72?h, respectively. The mRNA levels of Cyp1a and Cyp3a were analyzed in induced (3-MC, dexamethasone) and non-induced PHs. After 7 days of in vitro culture, PHs exhibited dramatic downregulation of hepatic marker expression in both cultures. Furthermore, apoptotic marker expression was higher in the 2-D-cultured PHs than 3-D-cultured PHs. The mRNA levels of Cyp1a and Cyp3a indicated higher RNA content in the 2-D-cultured PHs after 48?h of induction. Therefore, we concluded that there was no significant difference between the culture systems, and further studies are required to identify the essential components for in vitro PH culture rather than culture systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号