首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Damaged mitochondria are selectively degraded via autophagy in a regulated pathway known as mitophagy. Parkinson disease-linked proteins PINK1 (PTEN induced putative kinase 1) and PARK2 (parkin RBR E3 ubiquitin protein ligase) are recruited to the outer mitochondrial membrane upon mitochondrial damage, leading to the PARK2-mediated ubiquitination of mitochondrial proteins. Here, we discuss our recent work demonstrating that OPTN (optineurin) is recruited to damaged mitochondria, serving as an autophagy receptor for autophagosome formation around mitochondria. Using high-resolution live-cell imaging, we find that OPTN is recruited to ubiquitinated mitochondria downstream of PARK2, and induces autophagosome assembly around mitochondria via its LC3-interacting region. Mutations in OPTN are linked to both glaucoma and ALS (amyotrophic lateral sclerosis), and an ALS-associated E478G mutation in OPTN''s ubiquitin binding domain leads to defective mitophagy and accumulation of damaged mitochondria. Importantly, our results highlight a role for mitophagy defects in ALS pathogenesis, and demonstrate that defects in the same pathway for mitochondrial homeostasis are causal for both familial Parkinson disease and ALS.  相似文献   

2.
Selective degradation of mitochondria by mitophagy   总被引:17,自引:0,他引:17  
Mitochondria are the essential site of aerobic energy production in eukaryotic cells. Reactive oxygen species (ROS) are an inevitable by-product of mitochondrial metabolism and can cause mitochondrial DNA mutations and dysfunction. Mitochondrial damage can also be the consequence of disease processes. Therefore, maintaining a healthy population of mitochondria is essential to the well-being of cells. Autophagic delivery to lysosomes is the major degradative pathway in mitochondrial turnover, and we use the term mitophagy to refer to mitochondrial degradation by autophagy. Although long assumed to be a random process, increasing evidence indicates that mitophagy is a selective process. This review provides an overview of the process of mitophagy, the possible role of the mitochondrial permeability transition in mitophagy and the importance of mitophagy in turnover of dysfunctional mitochondria.  相似文献   

3.
Mutations in PTEN-induced putative kinase 1 (PINK1) cause recessive form of Parkinson’s disease (PD). PINK1 acts upstream of parkin, regulating mitochondrial integrity and functions. Here, we show that PINK1 in combination with parkin results in the perinuclear mitochondrial aggregation followed by their elimination. This elimination is reduced in cells expressing PINK1 mutants with wild-type parkin. Although wild-type PINK1 localizes in aggregated mitochondria, PINK1 mutants localization remains diffuse and mitochondrial elimination is not observed. This phenomenon is not observed in autophagy-deficient cells. These results suggest that mitophagy controlled by the PINK1/parkin pathway might be associated with PD pathogenesis.

Structured summary

MINT-7557195: PINK1 (uniprotkb:Q9BXM7) physically interacts (MI:0915) with LC3 (uniprotkb:Q9GZQ8) by anti tag coimmunoprecipitation (MI:0007)MINT-7557109: LC3 (uniprotkb:Q9GZQ8) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557121: tom20 (uniprotkb:Q15388) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557138: parkin (uniprotkb:O60260), PINK1 (uniprotkb:Q9BXM7) and tom20 (uniprotkb:Q15388) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557173: LC3 (uniprotkb:Q9GZQ8) physically interacts (MI:0915) with PINK1 (uniprotkb:Q9BXM7) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

4.
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson''s disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy.  相似文献   

5.
Parkinson disease (PD) is the second most prevalent neurodegenerative disorder, and thus elucidation of the pathogenic mechanism and establishment of a fundamental cure is essential in terms of public welfare. Fortunately, our understanding of the pathogenesis of two types of recessive familial PDs—early-onset familial PD caused by dysfunction of the PTEN-induced putative kinase 1 (PINK1) gene and autosomal recessive juvenile Parkinsonism (ARJP) caused by a mutation in the Parkin gene—has evolved and continues to expand.Key words: PINK1, parkin, ubiquitin, mitochondria, autophagy, mitophagy, membrane potential, quality controlSince the cloning of PINK1 and Parkin, numerous papers have been published about the corresponding gene products, but the mechanism by which dysfunction of PINK1 and/or Parkin causes PD remain unclear. Parkin encodes a ubiquitin ligase E3, a substrate recognition member of the ubiquitination pathway, whereas PINK1 encodes a mitochondria-targeted serine-threonine kinase that contributes to the maintenance of mitochondrial integrity. Based on their molecular functions, it is clear that Parkin-mediated ubiquitination and PINK1 phosphorylation are key events in disease pathogenesis. The underlying mechanism, however, is not as well defined and claims of pathogenicity, until recently, remained controversial. Although Parkin''s E3 activity was clearly demonstrated in vitro, we were unable to show a clear E3 activity of Parkin in cell/in vivo. In addition, despite a predicted mitochondrial localization signal for PINK1, we were unable to detect PINK1 on mitochondria by either immunoblotting or immunocytochemistry. More confusingly, overexpression of nontagged PINK1 mainly localized to the cytoplasm under steady state conditions.Work by Dr. Youle''s group at the National Institutes of Health in 2008, however, offered new insights. They reported that Parkin associated with depolarized mitochondria and that Parkin-marked mitochondria were subsequently cleared by autophagy. Soon after their publication, we also examined the function of Parkin and PINK1 following a decrease in mitochondrial membrane potential. Our findings, described below (Fig. 1), have contributed to the development of a mechanism explaining pathogenicity.Open in a separate windowFigure 1Model of mitochondrial quality control mediated by PINK1 and Parkin. Under steady-state conditions, the mature 60 kDa PINK1 is constantly cleaved by an unknown protease to a 50 kDa intermediate form that is subsequently degraded, presumably by the proteasome (upper part). The protein, however, is stabilized on depolarized mitochondria because the initial processing event is inhibited by a decrease in mitochondrial membrane potential (lower part). Accumulated PINK1 recruits cytosolic Parkin onto depolarized mitochondria resulting in activation of its E3 activity. Parkin then ubiquitinates a mitochondrial substrate(s). As a consequence, damaged mitochondria are degraded via mitophagy. Ub, ubiquitin.(1) We sought to determine the subcellular localization of endogenous PINK1, and realized that endogenous PINK1 is barely detectable under steady-state conditions. However, a decrease in mitochondrial membrane-potential following treatment with the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) results in the gradual accumulation of endogenous PINK1 on mitochondria. Importantly, when CCCP is washed out, the accumulated endogenous PINK1 rapidly disappears (within 30 min) both in the presence and absence of cycloheximide. These results support the hypothesis that PINK1 is constantly transported to the mitochondria, but is rapidly degraded in a membrane potential-dependent manner (see below for details). We speculate that PINK1 is stabilized by a decrease in mitochondrial membrane potential and as a result accumulates on depolarized mitochondria.(2) We examined the potential role of PINK1 in the mitochondrial recruitment of Parkin. In control MEFs (PINK1+/+), Parkin is selectively recruited to the mitochondria following CCCP treatment, and subsequently results in the selective disappearance of the mitochondria via autophagy (called mitophagy). In sharp contrast, Parkin is not translocated to the mitochondria in PINK1 knockout (PINK1−/−) MEFs following CCCP treatment, and subsequent mitochondrial degradation is also completely impeded. These results suggest that PINK1 is “a Parkin-recruitment factor” that recruits Parkin from the cytoplasm to damaged mitochondria in a membrane potential-dependent manner for mitophagy.(3) We monitored the E3 activity of Parkin using an artificial pseudo-substrate fused to Parkin in cells. Parkin''s E3 activity was repressed under steady-state conditions; however, we find that Parkin ubiquitinates the pseudo-substrate when it is retrieved to the depolarized mitochondria, suggesting that activation of the latent Parkin E3 activity is likewise dependent on a decrease in mitochondrial membrane potential.(4) PINK1 normally exists as either a long (approximately 60 kDa) or a short (approximately 50 kDa) protein. Because the canonical mitochondrial targeting signal (matrix targeting signal) is cleaved after import into the mitochondria, the long form has been designated as the precursor and the short form as the mature PINK1. However, our subcellular localization study of endogenous PINK1 following CCCP treatment shows that the long form is recovered in the mitochondrial fraction, suggesting that it is not the pre-import precursor form. Moreover, by monitoring the degradation process of PINK1 following recovery of membrane potential, we realized that the short form of PINK1 transiently appears soon after CCCP is washed out and then later disappears, suggesting that the processed form of PINK1 is an intermediate in membrane-potential-dependent degradation. In conclusion, these results imply that PINK1 cleavage does not reflect a canonical maturation process accompanying mitochondrial import as initially thought, but rather represents constitutive degradation in healthy mitochondria by a two-step mechanism; i.e., first limited processing and subsequent complete degradation probably via the proteasome.(5) PINK1 accumulation by decrease of membrane potential and subsequent recruitment of Parkin onto mitochondria are presumably etiologically important because they are impeded for the most part by disease-linked mutations of PINK1 or Parkin.These results, together with reports by other groups, strongly suggest that recessive familial PD is caused by dysfunction of quality control for depolarized mitochondria.At present, we do not know whether the aforementioned pathogenic mechanism of recessive familial PD can be generalized to prevalent sporadic PD. However, the clinical symptoms of recessive familial PD caused by dysfunction of PINK1 or Parkin resembles that of idiopathic PD except early-onset pathogenesis, and thus it is plausible that there is a common pathogenic mechanism. We accordingly believe that our results provide solid insight into the molecular mechanisms of PD pathogenesis, not only for familial forms caused by Parkin and PINK1 mutations, but also the major sporadic form of PD.To fully understand the molecular mechanism of PINK1-Parkin-mediated mitophagy, further details need to be addressed including: identifying the protease(s) that processes PINK1 in a mitochondrial membrane-potential dependent manner and that presumably monitors mitochondrial integrity; identifying a physiological substrate(s) of PINK1; determining the molecular mechanism underlying Parkin activation; and identifying the protein(s) linking Parkin-mediated ubiquitination to mitophagy. A detailed mechanism of the aforementioned events will be the focus of future research, however, we feel our conclusion that PINK1 and Parkin function in the removal of depolarized mitochondria is evident and hope that our studies will provide a solid foundation for further studies.  相似文献   

6.
Parkinson''s disease (PD) is the second most prevalent neurodegenerative disorder, affecting 1–3% of the population over 65. Mutations in the ubiquitin E3 ligase parkin are the most common cause of autosomal recessive PD. The parkin protein possesses potent cell-protective properties and has been mechanistically linked to both the regulation of apoptosis and the turnover of damaged mitochondria. Here, we explored these two functions of parkin and the relative scale of these processes in various cell types. While biochemical analyses and subcellular fractionation were sufficient to observe robust parkin-dependent mitophagy in immortalized cells, higher resolution techniques appear to be required for primary culture systems. These approaches, however, did affirm a critical role for parkin in the regulation of apoptosis in primary cultured neurons and all other cells studied. Our prior work demonstrated that parkin-dependent ubiquitination of endogenous Bax inhibits its mitochondrial translocation and can account for the anti-apoptotic effects of parkin. Having found a central role for parkin in the regulation of apoptosis, we further investigated the parkin-Bax interaction. We observed that the BH3 domain of Bax is critical for its recognition by parkin, and identified two lysines that are crucial for parkin-dependent regulation of Bax translocation. Last, a disease-linked mutation in parkin failed to influence Bax translocation to mitochondria after apoptotic stress. Taken together, our data suggest that regulation of apoptosis by the inhibition of Bax translocation is a prevalent physiological function of parkin regardless of the kind of cell stress, preventing overt cell death and supporting cell viability during mitochondrial injury and repair.Loss-of-function mutations in the ubiquitin E3 ligase parkin are the most common cause of autosomal recessive Parkinson''s disease (PD).1 Multiple functions have been ascribed to parkin, most notably the inhibition of apoptosis2, 3, 4, 5, 6, 7 and the induction of autophagic mitochondrial turnover (mitophagy).8, 9 However, the relative scale of these effects mediated by endogenous parkin and whether these processes can occur concomitantly or are mutually exclusive, is not known.Bax is a primary effector of cell death that translocates from the cytosol to the mitochondria upon stress, where it facilitates cytochrome c release and the subsequent caspase cascade.10 We previously identified Bax as a parkin substrate, and found that the anti-apoptotic effects of parkin can be directly linked to the parkin-dependent ubiquitination of Bax and inhibition of its mitochondrial translocation.3 Recent corroborative evidence showed that primary cultured neurons from parkin knock-out (KO) mice accumulate greater levels of activated Bax at the mitochondria than wild-type (WT) neurons after apoptotic stimulation,11 while a separate report showed the parkin-dependent ubiquitination of Bax during mitophagy.12In addition to its anti-apoptotic function, parkin facilitates a depolarization-induced and autophagy-dependent turnover of mitochondria. This process is robustly observed in immortalized cell lines expressing human parkin, where exposure to the mitochondrial depolarizing agent carbonyl cyanide 3-chlorophenylhydrazone (CCCP) causes rapid recruitment of parkin from the cytosol to the mitochondrial outer membrane and a coordinated proteasome and autophagosome-mediated turnover of the entire organelle.8, 13, 14, 15 Examination of this process in primary neuronal cultures with endogenous parkin expression, however, has been challenging,16, 17, 18, 19 and a cooperative role for inhibition of mitochondria-dependent cell death has not been investigated in the context of mitophagy.In this study, we sought further insight into the biological functions of parkin across multiple cell types. Our data showed that whole-cell biochemical techniques were not sufficient to observe the participation of endogenous parkin in mitochondrial turnover but were able to confirm the parkin-dependent regulation of apoptosis. Further examination of the parkin-dependent regulation of apoptosis identified two specific lysines of Bax that are critical for recognition and inhibition of its translocation to the mitochondria by parkin. In addition, the BH3 domain of Bax was critical for its association with parkin. Importantly, we observed parkin-dependent mitophagy and inhibition of apoptotic Bax translocation in the same cell culture systems, suggesting that these two pathways coexist and likely cooperate within neurons. Taken together, our data indicate that the parkin-dependent regulation of Bax is critical for cell survival, irrespective of the nature of cell stress involved.  相似文献   

7.
《Autophagy》2013,9(2):376-378
Mitophagy, or the selective clearance of mitochondria by autophagy, plays a key role in mitochondrial quality control. Due to their postmitotic nature and metabolic dependence on mitochondria, either insufficient or unchecked mitophagy is detrimental to neurons. To better understand signals that regulate this process, we treated primary rat cortical neurons with the electron transport chain complex I inhibitor rotenone to elicit mitophagy. The lipidomic profiles of mitochondria from control or injured neurons were analyzed by mass spectrometry, revealing a significant redistribution of cardiolipin (CL) from the inner mitochondrial membrane to the outer mitochondrial surface. Direct liposome-binding studies, computational modeling, and site-directed mutagenesis indicate that microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3), a defining protein of autophagic membranes, binds to CL. Preventing this interaction inhibits rotenone-induced mitochondrial delivery to autophagosomes and lysosomes and attenuates mitochondrial loss as assessed by western blot. The CL-LC3 interaction is also important for mitophagy induced by other stimuli including 6-hydroxydopamine, another chemical model of Parkinson disease. Given that a conserved LC3 phosphorylation site is adjacent to key residues involved in CL binding, signaling pathways could potentially modulate this interaction to fine-tune the mitochondrial recycling response.  相似文献   

8.
ABSTRACT

PRKN/parkin activation through phosphorylation of its ubiquitin and ubiquitin-like domain by PINK1 is critical in mitophagy induction for eliminating the damaged mitochondria. Deubiquitinating enzymes (DUBs) functionally reversing PRKN ubiquitination are critical in controlling the magnitude of PRKN-mediated mitophagy process. However, potential DUBs that directly target PRKN and antagonize its pro-mitophagy effect remains to be identified and characterized. Here, we demonstrated that USP33/VDU1 is localized at the outer membrane of mitochondria and serves as a PRKN DUB through their interaction. Cellular and in vitro assays illustrated that USP33 deubiquitinates PRKN in a DUB activity-dependent manner. USP33 prefers to remove K6, K11, K48 and K63-linked ubiquitin conjugates from PRKN, and deubiquitinates PRKN mainly at Lys435. Mutation of this site leads to a significantly decreased level of K63-, but not K48-linked PRKN ubiquitination. USP33 deficiency enhanced both K48- and K63-linked PRKN ubiquitination, but only K63-linked PRKN ubiquitination was significantly increased under mitochondrial depolarization. Further, USP33 knockdown increased both PRKN protein stabilization and its translocation to depolarized mitochondria leading to the enhancement of mitophagy. Moreover, USP33 silencing protects SH-SY5Y human neuroblastoma cells from the neurotoxin MPTP-induced apoptotic cell death. Our findings convincingly demonstrate that USP33 is a novel PRKN deubiquitinase antagonizing its regulatory roles in mitophagy and SH-SY5Y neuron-like cell survival. Thus, USP33 inhibition may represents an attractive new therapeutic strategy for PD patients.

Abbreviations: CCCP: carbonyl cyanide 3-chlorophenylhydrazone; DUB: deubiquitinating enzymes; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; OMM: outer mitochondrial membrane; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; TM: transmembrane; Ub: ubiquitin; UBA1: ubiquitin like modifier activating enzyme 1; UBE2L3/UbcH7: ubiquitin conjugating enzyme E2 L3; USP33: ubiquitin specific peptidase 33; WT: wild type.  相似文献   

9.
The autophagy protein BECN1/Beclin 1 is known to play a central role in autophagosome formation and maturation. The results presented here demonstrate that BECN1 interacts with the Parkinson disease-related protein PARK2. This interaction does not require PARK2 translocation to mitochondria and occurs mostly in cytosol. However, our results suggest that BECN1 is involved in PARK2 translocation to mitochondria because loss of BECN1 inhibits CCCP- or PINK1 overexpression-induced PARK2 translocation. Our results also demonstrate that the observed PARK2-BECN1 interaction is functionally important. Measurements of the level of MFN2 (mitofusin 2), a PARK2 substrate, demonstrate that depletion of BECN1 prevents PARK2 translocation-induced MFN2 ubiquitination and loss. BECN1 depletion also rescues the MFN2 loss-induced suppression of mitochondrial fusion. In sum, our results demonstrate that BECN1 interacts with PARK2 and regulates PARK2 translocation to mitochondria as well as PARK2-induced mitophagy prior to autophagosome formation.  相似文献   

10.
《Autophagy》2013,9(6):976-978
Proper degradation of aged and damaged mitochondria through mitophagy is essential to ensure mitochondrial integrity and function. Translocation of PARK2/Parkin onto damaged mitochondria induces mitophagy in many non-neuronal cell types. However, direct evidence showing PARK2-mediated mitophagy in mature neurons is controversial, leaving unanswered questions as to how, where, and by what time course PARK2-mediated mitophagy occurs in neurons following mitochondrial depolarization. We applied long time-lapse imaging in live mature cortical neurons to monitor the slow but dynamic and spatial PARK2 translocation onto damaged mitochondria and subsequent degradation through the autophagy-lysosomal pathway. In comparison with non-neuronal cells, our study reveals unique features of PARK2-mediated mitophagy in mature neurons, which will advance our understanding of pathogenesis of several major neurodegenerative diseases characterized by damaged mitochondria or a dysfunctional autophagy-lysosomal system.  相似文献   

11.
Cai Q  Zakaria HM  Sheng ZH 《Autophagy》2012,8(6):976-978
Proper degradation of aged and damaged mitochondria through mitophagy is essential to ensure mitochondrial integrity and function. Translocation of PARK2/Parkin onto damaged mitochondria induces mitophagy in many non-neuronal cell types. However, direct evidence showing PARK2-mediated mitophagy in mature neurons is controversial, leaving unanswered questions as to how, where, and by what time course PARK2-mediated mitophagy occurs in neurons following mitochondrial depolarization. We applied long time-lapse imaging in live mature cortical neurons to monitor the slow but dynamic and spatial PARK2 translocation onto damaged mitochondria and subsequent degradation through the autophagy-lysosomal pathway. In comparison with non-neuronal cells, our study reveals unique features of PARK2-mediated mitophagy in mature neurons, which will advance our understanding of pathogenesis of several major neurodegenerative diseases characterized by damaged mitochondria or a dysfunctional autophagy-lysosomal system.  相似文献   

12.
13.
Increasing autophagy is beneficial for curing hepatocellular carcinoma (HCC). Damage-regulated autophagy modulator (DRAM) was recently reported to induce apoptosis by mediating autophagy. However, the effects of DRAM-mediated autophagy on apoptosis in HCC cells remain unclear. In this study, normal hepatocytes (7702) and HCC cell lines (HepG2, Hep3B and Huh7) were starved for 48 h. Starvation induced apoptosis and autophagy in all cell lines. We determined that starvation also induced DRAM expression and DRAM-mediated autophagy in both normal hepatocytes and HCC cells. However, DRAM-mediated autophagy was involved in apoptosis in normal hepatocytes but not in HCC cells, suggesting that DRAM-mediated autophagy fails to induce apoptosis in hepatoma in response to starvation. Immunoblot and immunofluorescence assays demonstrated that DRAM translocated to mitochondria and induced mitophagy, which led to apoptosis in 7702 cells. In HCC cells, starvation also activated the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which blocks the translocation of DRAM to mitochondria through the binding of p-AKT to DRAM in the cytoplasm. Inactivation of the PI3K/AKT pathway rescued DRAM translocation to mitochondria; subsequently, mitochondrial DRAM induced apoptosis in HCC cells by mediating mitophagy. Our findings open new avenues for the investigation of the mechanisms of DRAM-mediated autophagy and suggest that promoting DRAM-mediated autophagy together with PI3K/AKT inhibition might be more effective for autophagy-based therapy in hepatoma.  相似文献   

14.
《Cell reports》2023,42(5):112454
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
:线粒体的大多数蛋白质是由核基因编码、细胞质合成,而最终运输到线粒体。在此过程中,需要线粒体外膜和内膜的蛋白质运输机器(至少三种主要的移位酶复合物)来保证前体蛋白质的正确运输。  相似文献   

17.
18.
Proton translocation and energy transduction in mitochondria   总被引:1,自引:0,他引:1  
S Papa  F Guerrieri  M Lorusso  S Simone 《Biochimie》1973,55(6):703-716
  相似文献   

19.
Most of the malic enzyme activity in the brain is found in the mitochondria. This isozyme may have a key role in the pyruvate recycling pathway which utilizes dicarboxylic acids and substrates such as glutamine to provide pyruvate to maintain TCA cycle activity when glucose and lactate are low. In the present study we determined the activity and kinetics of malic enzyme in two subfractions of mitochondria isolated from cortical synaptic terminals, as well as the activity and kinetics in mitochondria isolated from primary cultures of cortical neurons and cerebellar granule cells. The synaptic mitochondrial fractions had very high mitochondrial malic enzyme (mME) activity with a Km and a Vmax of 0.37 mM and 32.6 nmol/min/mg protein and 0.29 mM and 22.4 nmol/min mg protein, for the SM2 and SM1 fractions, respectively. The Km and Vmax for malic enzyme activity in mitochondria isolated from cortical neurons was 0.10 mM and 1.4 nmol/min/mg protein and from cerebellar granule cells was 0.16 mM and 5.2 nmol/min/mg protein. These data show that mME activity is highly enriched in cortical synaptic mitochondria compared to mitochondria from cultured cortical neurons. The activity of mME in cerebellar granule cells is of the same magnitude as astrocyte mitochondria. The extremely high activity of mME in synaptic mitochondria is consistent with a role for mME in the pyruvate recycling pathway, and a function in maintaining the intramitochondrial reduced glutathione in synaptic terminals.  相似文献   

20.
Statins are cholesterol-lowing drugs with pleiotropic effects including cytotoxicity to cancer cells. In this study, we investigated the signaling pathways leading to apoptosis by simvastatin. Simvastatin induced cardinal features of apoptosis including increased DNA fragmentation, disruption of mitochondrial membrane potential (MMP), and increased caspase-3 activity by depleting isoprenoids in MethA fibrosarcoma cells. Interestingly, the simvastatin-induced apoptosis was accompanied by p53 stabilization involving Mdm2 degradation. The apoptosis was ameliorated in p53 knockdown clones of MethA cells as well as p53−/− HCT116 cells. The stabilized p53 protein translocated to mitochondria with Bax, and cytochrome c was released into cytosol. Moreover, knockdown or deficiency of p53 expression reduced both Bax translocation to mitochondria and MMP disruption in simvastatin-induced apoptosis. Taken together, these all indicate that stabilization and translocation of p53 to mitochondria is involved in Bax translocation to mitochondria in simvastatin-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号