首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATG4B facilitates autophagy by promoting autophagosome maturation through the reversible lipidation and delipidation of LC3. Recent reports have shown that phosphorylation of ATG4B regulates its activity and LC3 processing, leading to modulate autophagy activity. However, the mechanism about how ATG4B phosphorylation is involved in amino acid deprivation-induced autophagy is unclear. Here, we combined the tandem affinity purification with mass spectrometry (MS) and identified the ATG4B-interacting proteins including its well-known partner gamma-aminobutyric acid receptor-associated protein (GABARAP, a homolog of LC3) and phosphofructokinase 1 platelet isoform (PFKP). Further immunoprecipitation assays showed that amino acid deprivation strengthened the interaction between ATG4B and PFKP. By genetic depletion of PFKP using CRISPR/Cas9, we uncovered that PFKP loss reduced the degradation of LC3-II and p62 due to a partial block in autophagic flux. Furthermore, MS analysis of Flag-tagged ATG4B immunoprecipitates identified phosphorylation of ATG4B serine 34 residue (S34) and PFKP serine 386 residue (S386) under amino acid deprivation condition. In vitro kinase assay validated that PFKP functioning as a protein kinase phosphorylated ATG4B at S34. This phosphorylation could enhance ATG4B activity and p62 degradation. In addition, PFKP S386 phosphorylation was important to ATG4B S34 phosphorylation and autophagy in HEK293T cells. In brief, our findings describe that PFKP, a rate-limiting enzyme in the glycolytic pathway, functions as a protein kinase for ATG4B to regulate ATG4B activity and autophagy under amino acid deprivation condition.  相似文献   

2.
Autophagy is the main lysosomal catabolic process that becomes activated under stress conditions, such as amino acid starvation and cytosolic Ca2+ upload. However, the molecular details on how both conditions control autophagy are still not fully understood. Here we link essential amino acid starvation and Ca2+ in a signaling pathway to activate autophagy. We show that withdrawal of essential amino acids leads to an increase in cytosolic Ca2+, arising from both extracellular medium and intracellular stores, which induces the activation of adenosine monophosphate-activated protein kinase (AMPK) via Ca2+/calmodulin-dependent kinase kinase-β (CaMKK-β). Furthermore, we show that autophagy induced by amino acid starvation requires AMPK, as this induction is attenuated in its absence. Subsequently, AMPK activates UNC-51-like kinase (ULK1), a mammalian autophagy-initiating kinase, through phosphorylation at Ser-555 in a process that requires CaMKK-β. Finally, the mammalian target of rapamycin complex C1 (mTORC1), a negative regulator of autophagy downstream of AMPK, is inhibited by amino acid starvation in a Ca2+-sensitive manner, and CaMKK-β appears to be important for mTORC1 inactivation, especially in the absence of extracellular Ca2+. All these results highlight that amino acid starvation regulates autophagy in part through an increase in cellular Ca2+ that activates a CaMKK-β-AMPK pathway and inhibits mTORC1, which results in ULK1 stimulation.  相似文献   

3.
Macroautophagy, commonly referred to as autophagy, is a protein degradation pathway that occurs constitutively in cells, but can also be induced by stressors such as nutrient starvation or protein aggregation. Autophagy has been implicated in multiple disease mechanisms including neurodegeneration and cancer, with both tumor suppressive and oncogenic roles. Uncoordinated 51-like kinase 1 (ULK1) is a critical autophagy protein near the apex of the hierarchal regulatory pathway that receives signals from the master nutrient sensors MTOR and AMP-activated protein kinase (AMPK). In mammals, ULK1 has a close homolog, ULK2, although their functional distinctions have been unclear. Here, we show that ULK1 and ULK2 both function to support autophagy activation following nutrient starvation. Increased autophagy following amino acid or glucose starvation was disrupted only upon combined loss of ULK1 and ULK2 in mouse embryonic fibroblasts. Generation of PtdIns3P and recruitment of WIPI2 or ZFYVE1/DFCP1 to the phagophore following amino acid starvation was blocked by combined Ulk1/2 double knockout. Autophagy activation following glucose starvation did not involve recruitment of either WIPI1 or WIPI2 to forming autophagosomes. Consistent with a PtdIns3P-independent mechanism, glucose-dependent autophagy was resistant to wortmannin. Our findings support functional redundancy between ULK1 and ULK2 for nutrient-dependent activation of autophagy and furthermore highlight the differential pathways that respond to amino acid and glucose deprivation.  相似文献   

4.
《Autophagy》2013,9(11):2085-2086
The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 signaling pathway to promote autophagy upon amino acid limitation. Under these conditions, TORC2, through its downstream target kinase Ypk1, inhibits the Ca2+- and Cmd1/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing EIF2S1/eIF2α kinase, Gcn2, and promote autophagy. Thus TORC2 signaling regulates autophagy in a pathway distinct from TORC1 to provide a tunable response to the cellular metabolic state.  相似文献   

5.
Ariadne Vlahakis  Ted Powers 《Autophagy》2014,10(11):2085-2086
The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 signaling pathway to promote autophagy upon amino acid limitation. Under these conditions, TORC2, through its downstream target kinase Ypk1, inhibits the Ca2+- and Cmd1/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing EIF2S1/eIF2α kinase, Gcn2, and promote autophagy. Thus TORC2 signaling regulates autophagy in a pathway distinct from TORC1 to provide a tunable response to the cellular metabolic state.  相似文献   

6.
7.
8.
9.
In response to stress conditions (such as nutrient limitation or accumulation of damaged organelles) and certain pathological situations, eukaryotic cells use autophagy as a survival mechanism. During nutrient stress the main purpose of autophagy is to degrade cytoplasmic materials within the lysosome/vacuole lumen and generate an internal nutrient pool that is recycled back to the cytosol. This study elucidates a molecular mechanism for linking the degradative and recycling roles of autophagy. We show that in contrast to published studies, Atg22 is not directly required for the breakdown of autophagic bodies within the lysosome/vacuole. Instead, we demonstrate that Atg22, Avt3, and Avt4 are partially redundant vacuolar effluxers, which mediate the efflux of leucine and other amino acids resulting from autophagic degradation. The release of autophagic amino acids allows the maintenance of protein synthesis and viability during nitrogen starvation. We propose a "recycling" model that includes the efflux of macromolecules from the lysosome/vacuole as the final step of autophagy.  相似文献   

10.
During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental setup, that autophagy specifically can remove certain subcellular components. We used an unbiased quantitative proteomics approach relying on stable isotope labeling by amino acids in cell culture (SILAC) to study global protein dynamics during amino acid starvation-induced autophagy. Looking at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what is its role during starvation?  相似文献   

11.
《Autophagy》2013,9(8):1179-1180
Autophagy, a highly regulated catabolic process, is controlled by the action of positive and negative regulators. While many of the positive mediators of autophagy have been identified, very little is known about negative regulators that might counterbalance the process. We recently identified deathassociated protein 1 (DAP1) as a suppressor of autophagy and as a novel direct substrate of mammalian target of rapamycin (mTOR). We found that DAP1 is functionally silent in cells growing under rich nutrient supplies through mTOR-dependent inhibitory phosphorylation on two sites, which were mapped to Ser3 and Ser51. During amino acid starvation, mTOR activity is turned off resulting in a rapid reduction in the phosphorylation of DAP1. This caused the conversion of the protein into a suppressor of autophagy, thus providing a buffering mechanism that counterbalances the autophagic flux and prevents its overactivation under conditions of nutrient deprivation. Based on these studies we propose the “gas and brake” concept in which mTOR, the main sensor that regulates autophagy in response to amino acid deprivation, also controls the activity of a specific balancing brake to prevent the overactivation of autophagy.  相似文献   

12.
In cellular circumstances under which carbohydrates are scarce, plants can metabolize proteins and lipids as alternative respiratory substrates. Respiration of protein is less efficient than that of carbohydrate as assessed by the respiratory quotient; however, under certain adverse conditions, it represents an important alternative energy source for the cell. Significant effort has been invested in understanding the regulation of protein degradation in plants. This has included an investigation of how proteins are targeted to the proteosome, and the processes of senescence and autophagy. Here we review these events with particular reference to amino acid catabolism and its role in supporting the tricarboxylic acid cycle and direct electron supply to the ubiquinone pool of the mitochondrial electron transport chain in plants.  相似文献   

13.
The target of rapamycin (TOR) kinase is a conserved regulator of cell growth and functions within 2 different protein complexes, TORC1 and TORC2, where TORC2 positively controls macroautophagy/autophagy during amino acid starvation. Under these conditions, TORC2 signaling inhibits the activity of the calcium-regulated phosphatase calcineurin and promotes the general amino acid control (GAAC) response and autophagy. Here we demonstrate that TORC2 regulates calcineurin by controlling the respiratory activity of mitochondria. In particular, we find that mitochondrial oxidative stress affects the calcium channel regulatory protein Mid1, which we show is an essential upstream activator of calcineurin. Thus, these findings describe a novel regulation for autophagy that involves TORC2 signaling, mitochondrial respiration, and calcium homeostasis.  相似文献   

14.
Autophagy is an evolutionarily conserved catabolic mechanism that targets intracellular molecules and damaged organelles to lysosomes. Autophagy is achieved by a series of membrane trafficking events, but their regulatory mechanisms are poorly understood. Here, we report small GTPase Rab12 as a new type of autophagic regulator that controls the degradation of an amino‐acid transporter. Knockdown of Rab12 results in inhibition of autophagy and in increased activity of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), an upstream regulator of autophagy. We also found that Rab12 promotes constitutive degradation of PAT4 (proton‐coupled amino‐acid transporter 4), whose accumulation in Rab12‐knockdown cells modulates mTORC1 activity and autophagy. Our findings reveal a new mechanism of regulation of mTORC1 signalling and autophagy, that is, quality control of PAT4 by Rab12.  相似文献   

15.
The ribosomal protein S6 kinase 1 (S6K1) is emerging as a common downstream target of signalling by hormones and nutrients such as insulin and amino acids. Here, we have investigated how amino acids signal through the S6K1 pathway. First, we found that a commercial anti-phospho-Thr389-S6K1 antibody detects an 80-90 kDa protein that is rapidly phosphorylated in response to amino acids. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI-3 kinase inhibitors, and knockdown experiments showed that this protein was not S6K1. Looking for candidate targets of this phosphorylation, we found that amino acids stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. In turn, these phosphorylations required the activity of either p38 or ERK MAP kinases, which could compensate for each other. Moreover, we show that these MAP kinases are also needed for the amino acid-induced phosphorylation of S6K1 at Thr421/Ser424, as well as for that of S6K1 substrate, the S6 ribosomal protein. Consistent with these results, concomitant inhibition of p38 and ERK pathways also antagonised the well-known effects of amino acids on the process of autophagy. Altogether, these findings demonstrate a previously unknown role for MAP kinases in amino acid signalling.  相似文献   

16.
Yang Z  Klionsky DJ 《Autophagy》2007,3(2):149-150
Autophagy is a major survival mechanism for eukaryotes to recycle cellular nutrients during stress conditions (such as nutrient limitation, or the accumulation of damaged organelles). We recently revealed a molecular mechanism by which Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Atg22 is not directly required for autophagic body breakdown, in contrast to previously reported data. Instead, we found that Atg22, Avt3 and Avt4 are partially redundant vacuolar effluxers, which mediate the efflux of leucine and other amino acids resulting from autophagy.  相似文献   

17.
18.
《Autophagy》2013,9(2):386-387
Cells respond to the deprivation of nutrients by inducing autophagy. However, mechanisms through which cells coordinately regulate autophagy with metabolic state remain incompletely understood. We previously observed that prototrophic strains of yeast induce autophagy upon switch from a rich to minimal medium in the absence of severe nitrogen starvation. We determined that the sulfur-containing amino acid methionine and its downstream metabolite S-adenosylmethionine (SAM) are sufficient to strongly inhibit such autophagy. These metabolites function through Ppm1, an enzyme that methylates the catalytic subunit of the protein phosphatase PP2A. As such, methionine and SAM act as critical signals of amino acid sufficiency that reciprocally regulate autophagy and cell growth by modulating the methylation status of PP2A.  相似文献   

19.
We have previously shown that stress-induced protein degradation requires a functional ubiquitin-activating enzyme and the autophagic-lysosomal pathway. In this study, we examined the occurrence of ubiquitin-protein conjugates that form during nutrient starvation. Kidney and liver epithelial cells respond to nutrient stress by enhancing autophagy and protein degradation. We have shown that this degradative response was more dramatic in nondividing cultures. In addition, the onset of autophagy was suppressed by pactamycin, cycloheximide, and puromycin. We observed an accumulation of ubiquitinated proteins coincident with the degradative response to amino acid starvation. The stress-induced protein ubiquitination was not affected by cycloheximide, indicating that protein synthesis was not required. The ubiquitinated proteins were localized to the cytosol and subcellular fractions enriched with autophagosomes and lysosomes. The incorporation of the ubiquitinated proteins into autolysosomes was dramatically reduced by 3-methyladenine, an inhibitor of autophagy. The evidence suggests that ubiquitinated proteins are sequestered by autophagy for degradation. We next set out to identify those primary ubiquitinated proteins at 60 kDa and 68 kDa. Polyclonal antibodies were prepared against these proteins that had been immunopurified from rat liver lysosomes. The antibodies prepared against those 68 kDa proteins also recognized a 40 kDa protein in cytosolic fractions. Internal amino acid sequences obtained from two cyanogen bromide fragments of this 40 kDa protein were shown to be identical to sequences in liver fructose-1,6-bisphosphate aldolase B. Anti-Ub68 antibodies recognized purified aldolase A and aldolase B. Conversely, antibodies prepared against aldolase B recognized the 40 kDa aldolase as well as four to five high molecular weight forms, including a 68 kDa protein. Finally, we have shown that the degradation of aldolase B was enhanced during amino acid and serum starvation. This degradation was suppressed by chloroquine and 3-methyladenine, suggesting that aldolase B was being degraded within autolysosomes. We propose that aldolase B is ubiquitinated within the cytosol and then transported into autophagosomes and autolysosomes for degradation during nutrient stress. J Cell Physiol 178:17–27, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
Autophagy plays an important role in the cellular response to a variety of metabolic stress conditions thus contributing to the maintenance of intracellular homeostasis. Studies in yeast have defined the genetic components involved in the initiation of autophagy as well as the progression through the autophagic cascade. The yeast kinase Atg1 initiates autophagy in response to nutrient limitation in a TOR-dependent manner. The ulk family of genes encodes the mammalian orthologue of yeast Atg1. Our recent work using mouse embryonic fibroblast (MEF) cell lines deficient for both ulk1 and ulk2, has revealed that autophagy induction is more complex in mammals than in yeast. Furthermore, these data confirm the surprising finding that a by-product of amino acid metabolism, ammonia, is a strong inducer of autophagy, as first shown by the Abraham laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号