首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High field 1H NMR spectroscopy demonstrated that addition of Co(II) ions to osteoarthritic knee-joint synovial fluid (SF) resulted in its complexation by a range of biomolecules, the relative efficacies of these complexants/chelators being citrate > histidine - threonine > glycine - glutamate - glutamine - phenylalanine tyrosine > formate > lactate > alanine > valine > acetate > pyruvate > creatinine, this order reflecting the ability of these ligands to compete for the available Co(II) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations. Since many of these SF Co(II) complexants (e.g. histidinate) serve as powerful *OH scavengers, the results acquired indicate that any of this radical generated from the Co(II) source in such complexes via Fenton or pseudo-Fenton reaction systems will be "site-specifically" scavenged. The significance of these observations with regard to cobalt toxicity and the in vivo corrosion of cobalt-containing metal alloy joint prostheses (e.g. CoCr alloys) is discussed.  相似文献   

2.
High field 1H NMR spectroscopy demonstrated that addition of Co(II) ions to osteoarthritic knee-joint synovial fluid (SF) resulted in its complexation by a range of biomolecules, the relative efficacies of these complexants/chelators being citrate ? histidine ~ threonine?glycine ~ glutamate ~ glutamine ~ phenylalanine ~ tyrosine > formate > lactate?alanine > valine > acetate > pyruvate > creatinine, this order reflecting the ability of these ligands to compete for the available Co(II) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations. Since many of these SF Co(II) complexants (e.g. histidinate) serve as powerful ?OH scavengers, the results acquired indicate that any of this radical generated from the Co(II) source in such complexes via Fenton or pseudo-Fenton reaction systems will be “site-specifically” scavenged. The significance of these observations with regard to cobalt toxicity and the in vivo corrosion of cobalt-containing metal alloy joint prostheses (e.g. CoCr alloys) is discussed.  相似文献   

3.
High field (1)H NMR spectroscopy demonstrated that equilibration of added Cr(III) ions in osteoarthritic knee-joint synovial fluid (SF) resulted in its complexation by a range of biomolecules, the relative efficacies of these complexants/chelators being threonine approximately alanine>glycine>glutamine>citrate>histidine approximately phenylalanine approximately tyrosine>valine approximately isoleucine approximately leucine>glutamate>lactate approximately acetate approximately formate approximately pyruvate, this order reflecting the ability of these ligands to compete for the available Cr(III) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations. The significance of these observations with regard to the in vivo corrosion of chromium-containing metal alloy joint prostheses (e.g., CoCr alloys) is discussed.  相似文献   

4.
The interfering effects of copper, zinc, and cobalt on the uptake of mugineic acid-ferric complex were studied in barley ( Hordeum vulgare , cv. Minorimugi) grown in nutrient solution. Short-term uptake experiments of 3 h were performed utilizing both ionic and mugineic acid-complex forms of each metal at two different concentrations. Copper was most effective in decreasing iron uptake when added in an ionic form at either concentration. The inhibition order at higher concentrations followed Cu(II) > Zn(II) ≥ Co(II), Co(III), which is consistent with the stability constants of these metal complexes with mugineic acid. The displacement of iron from its mugineic acid complex by these metals is suggested as a probable explanation for the decreased iron uptake. The inhibitory effect of metal complexes with mugineic acid on iron uptake was only found in cases with higher concentrations of Cu(II) and Zn(II) complexes. Deformation of the specific iron transport system in the plasma membrane due to their adsorption may be responsible for this effect.  相似文献   

5.
Mixed aquo-N-methylimidazole complexes of Co(II) have been studied as a function of pH to gain a fuller understanding of the metal-binding site in Co(II)-carbonic anhydrase. The inherent affinity of N-methylimidazole for Co(II) has been calculated along with a species distribution for the stepwise addition of ligand to the metal ion. From these studies, it is apparent that the occurrence of Zn(II) rather than Co(II) in native carbonic anhydrase can be explained by the stronger affinity of Zn(II) for imidazole and the preference of Zn(II) for a tetrahedral geometry as offered by the enzyme. Octahedral Co(II) fails to ionize metal bound water. However, at high pH, Co(II)-N-methylimidazole complexes interact directly with the hydroxide ion, generating species with visible spectra very similar to that of Co(II)-carbonic anhydrase. Tentative structures have been proposed for these species.  相似文献   

6.
The selectivity of chitosan has been modified through metal ion imprinting technique for its potential application in nuclear industry. Considerable reduction in radioactive waste volume, generated during the chemical decontamination of nuclear power plants, can be achieved through the selective removal of the radionuclides. In this context, a Co(II) imprinted chitosan was synthesized using epichlorohydrin as the crosslinker. The selective removal of Co(II) in presence of Fe(II), which is the major non-radioactive ion present in excess during decontamination, was studied. The imprinted chitosan showed selective sorption of Co(II) over Fe(II), while the raw chitosan was selective to Fe(II) over Co(II). The imprinted chitosan was found to retain the enhanced selectivity towards Co(II) under various solution conditions, including typical nuclear reactor decontamination formulations containing strong complexants. The highest uptake by the imprinted chitosan, with maximum selectivity for Co(II) over Fe(II), was obtained in citrate medium at pH 4.8.  相似文献   

7.
The paramagnetic effects of the bound manganese ion and of a covalently attached spin label on proton nuclear spin relaxation rates have been used to calculate distances for a structural model of the MnADP and creatine complexed to creatine kinase from rabbit muscle. The nucleotide and guanidino substrates are so aligned on the enzyme that the transferable phosphoryl group on one substrate is in apposition to the acceptor moiety on the second substrate. The divalent metal ion is most probably liganded to the alpha and beta phosphates of the nucleotide substrate, both in the abortive MnADP-creatine-enzyme complex and in the active MnATP-creatine-enzyme complex. The metal ion-formate distance approximately 5 A in the Mn(II)ADP-formate-creatine-enzyme complex and less than 5 A in the Co(II)ADP-formate-creatine-enzyme complex is consistent with the suggestion that the monovalent anion is binding at the site normally occupied by the transferable phosphoryl group, thus producing a complex which mimics the transition state. Although only an upper limit of the distance from Mn(II) to the guanidino substrate could be determined in the presence of formate, it could be concluded that the disposition of the guanidino substrate changes upon addition of formate, since the relative distances of the methyl and methylene group are inverted. The effect of formate and nitrate on increasing the residence time of creatine in the MnADP-creatine-enzyme complex as determined by NMR provides evidence that the complexes observed by NMR are identical with those involved in the catalytic mechanism, since a parallel effect of formate and nitrate is observed in the kinetics of the enzymatic reaction, where the dissociation constant of creatine from the abortive quaternary complex decreases in the presence of the anions as had been determined from their inhibition of the forward reaction (Milner-White, E.J., and Watts, D.C. (1971) Biochem. J. 122, 727-740). Although the guanidino substrate is not directly liganded to the divalent metal ion, the electron paramagnetic resonance spectrum of manganese in the transition state analog complexes, i.e. nitrate-ADP-guanidino substrate-enzyme, is strongly dependent on catalytic activity of the guanidino substrate. The structural differences observed by EPR among transition state analog complexes with various guanidino substrates were not reflected in distances from Mn(II) to the guanidino substrate, which were 10% and 0.3% as active as creatine. Within the experimental error of 1 A, the distances were the same. The enzyme or the enzyme-substrate complexes may be considered to exist in a number of structurally distinct conformations in equilibrium based on the EPR spectra and on the anomalous temperature-dependence of the relaxation rates of the formate proton of the transition state analog complexes...  相似文献   

8.
D'souza VM  Bennett B  Copik AJ  Holz RC 《Biochemistry》2000,39(13):3817-3826
The metal-binding properties of the methionyl aminopeptidase from Escherichia coli (MetAP) were investigated. Measurements of catalytic activity as a function of added Co(II) and Fe(II) revealed that maximal enzymatic activity is observed after the addition of only 1 equiv of divalent metal ion. Based on these studies, metal binding constants for the first metal binding event were found to be 0.3 +/- 0.2 microM and 0.2 +/- 0.2 microM for Co(II)- and Fe(II)-substituted MetAP, respectively. Binding of excess metal ions (>50 equiv) resulted in the loss of approximately 50% of the catalytic activity. Electronic absorption spectral titration of a 1 mM sample of MetAP with Co(II) provided a binding constant of 2.5 +/- 0.5 mM for the second metal binding site. Furthermore, the electronic absorption spectra of Co(II)-loaded MetAP indicated that both metal ions reside in a pentacoordinate geometry. Consistent with the absorption data, electron paramagnetic resonance (EPR) spectra of [CoCo(MetAP)] also indicated that the Co(II) geometries are not highly constrained, suggesting that each Co(II) ion in MetAP resides in a pentacoordinate geometry. EPR studies on [CoCo(MetAP)] also revealed that at pH 7.5 there is no significant spin-coupling between the two Co(II) ions, though a small proportion ( approximately 5%) of the sample exhibited detectable spin-spin interactions at pH values > 9.6. EPR studies on [Fe(III)_(MetAP)] and [Fe(III)Fe(III)(MetAP)] also suggested no spin-coupling between the two metal ions. (1)H nuclear magnetic resonance (NMR) spectra of [Co(II)_(MetAP)] in both H(2)O and D(2)O buffer indicated that the first metal binding site contains the only active-site histidine residue, His171. Mechanistic implications of the observed binding properties of divalent metal ions to the MetAP from E. coli are discussed.  相似文献   

9.
10.
Schiff bases have been synthesized by the reaction of p-nitrobenzaldehyde, o-nitrobenzaldehyde and p-toluyaldehyde with 4-amino-5-mercapto-1,2,4-triazole. The ligands react with Co(II), Ni(II) and Zn(II) metals to yield (1:1) and (1:2) [metal:ligand] complexes. Elemental analyses, IR, 1H NMR, electronic spectral data, magnetic susceptibility measurements, molar conductivity measurements and thermal studies have investigated the structure of the ligands and their metal complexes. The electronic spectral data suggests octahedral geometry for Co(II), Ni(II) and Zn(II). The antibacterial activities of the ligands and their metal complexes have been screened in vitro against three Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and two Gram-negative (Salmonella typhi and Pseudomonas aeruginosa) organisms. The coordination of the metal ion had a pronounced effect on the microbial activities of the ligands and the metal complexes have higher antimicrobial effect than the free ligands.  相似文献   

11.
Epperson JD  Ming LJ 《Biochemistry》2000,39(14):4037-4045
Bacitracin is a widely used metal-dependent peptide antibiotic produced by Bacillus subtilis and Bacillus licheniformis with a potent bactericidal activity directed primarily against Gram-positive organisms. This antibiotic requires a divalent metal ion such as Zn(II) for its biological activity, and has been reported to bind several other transition metal ions, including Co(II), Ni(II), and Cu(II). Despite the wide use of bacitracin, a structure-activity relationship for this drug has not been established, and the structure of its metal complexes has not been fully determined. We report here one- and two-dimensional nuclear magnetic resonance (NMR) studies of the structure of the metal complexes of several bacitracin analogues by the use of paramagnetic Co(II) as a probe. The Co(II) complex of this antibiotic exhibits many well-resolved isotropically shifted (1)H NMR signals in a large spectral window ( approximately 200 ppm) due to protons near the metal, resulting from both contact and dipolar shift mechanisms. The assignment of the isotropically shifted (1)H NMR features concludes that bacitracin A(1), the most potent component of the bacitracin mixture, binds to Co(II) via the His-10 imidazole ring N(epsilon), the thiazoline nitrogen, and the monodentate Glu-4 carboxylate to form a labile complex in aqueous solutions. The free amine of Ile-1 does not bind Co(II). Several different analogues of bacitracin have also been isolated or prepared, and the studies of their Co(II) binding properties further indicate that the antimicrobial activity of these derivatives correlates directly to their metal binding mode. For example, the isotropically shifted (1)H NMR spectral features of the high-potent bacitracin analogues, including bacitracins A(1), B(1), and B(2), are virtually identical. However, Glu-4 and/or the thiazoline ring does not bind Co(II) in the bacitracin analogues with low antibiotic activities, including bacitracins A(2) and F.  相似文献   

12.
Mononuclear neutral manganese(II) and cobalt(II) complexes with the antibiotic Sodium Monensin A (Mon-Na, 1b) were synthesized and characterized. The crystal structures of M(Mon-Na)2Cl2.H2O (M=Mn, 2; M=Co, 3) were determined by X-ray crystallography. The complexes crystallize in monoclinic space group C2 with a tetrahedrally coordinated transition metal attached to oxygen atoms of deprotonated carboxyl groups of two Sodium Monensin molecules and two chloride ions. The sodium ion remains in the cavity of the ligand and cannot be replaced by Mn(II) or Co(II). The complexes were additionally characterized by different spectroscopic techniques (UV-Visible, EPR, FAB-MS). A preferable octahedral environment around the transition metal centers is observed in polar solvents while the complexes retain their tetrahedral structure in non-polar media. The antimicrobial activity of 1b, 2 and 3 was tested against Gram(+) and Gram(-) bacteria.  相似文献   

13.
Three cobalt complexes containing the salen type ligand, bis(salicylidene)-meso-1,2-diphenylethylenediaminato (mdpSal2−), are reported. The complexes differ in nuclearity and include the mononuclear, Co(mdpSal) (1), which contains a Co(II) metal center bound to one mdpSal−2 ligand frame in a square planar geometry. The second complex is the dinuclear [Co(mdpSal)Cl]2 (2) in which both cobalt ions have been oxidized to the +3 oxidation state. The overall geometry of complex 2 is an edge-sharing bioctahedron with the coordination sphere around each cobalt metal center consisting of one mdpSal−2 ligand and one Cl ion. The shared edge between the Co(III) ions contains two bridging phenolate groups, one from each ligand frame. Complex 3 is a linear, mixed valence, trinuclear species, [Co(mdpSal)(OAc)(μ-OAc)]2Co, with the oxidation states of the metal centers assigned as Co(III)-Co(II)-Co(III). The terminal Co(III) centers are equivalent with the central Co(II) lying on the inversion center of the molecule. Each cobalt ion in 3 adopts an octahedral geometry with the terminal Co(III) ions being bound to one mdpSal2− ligand each. All phenolate groups bridge to the central Co(II). The coordination sphere about each metal center in the trinuclear complex is completed by four acetate groups, two of which bind in a μ-fashion bridging from the terminal Co(III) metal centers to the central Co(II). The complexes have been characterized by X-ray crystallography as well as UV-Vis and IR spectroscopy.  相似文献   

14.
Cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes with two new unsymmetrical ligands, isatin salicylaldehyde oxalic acid dihydrazide (isodh) and isatin salicylaldehyde malonic acid dihydrazide (ismdh) were synthesized and characterized by elemental analyses, electrical conductance, magnetic moments, electronic, NMR, ESR and IR spectral studies. The isodh acts as a dibasic tetra dentate ligand bonding through two >C=N-, a deprotonated phenolate and deprotonated indole enolate groups to the metal. The ismdh ligand shows monobasic tetra dentate behaviour in bonding with metal ion through two >C=N-, indole >C=O and a deprotonated phenolate group. The electronic spectral data suggest 4-coordinate square planar geometry for Co(II), Ni(II) and Cu(II) complexes of isodh, whereas, 6-coordinate octahedral structure for the ismdh complexes. The ESR studies also indicate a square planar and distorted octahedral environment around Cu(II) for isodh and ismdh complexes, respectively. Most of the metal complexes show better antifungal activity than the standard and a significant antibacterial activity against various fungi and bacteria.  相似文献   

15.
16.
Raman and IR studies are carried out on carnosine (beta-alanyl-L-histidine, Carnos) and its complexes with cobalt(II) at different metal/ligand ratios and basic pH. Binuclear complexes that bind molecular oxygen are formed and information regarding the O-O bridge is obtained from the Raman spectra. When the Co(II)/Carnos ratio is 相似文献   

17.
Histidine-containing peptide fragments of prion protein are efficient ligands to bind various transition metal ions and they have high selectivity in metal binding. The metal ion affinity follows the order: Pd(II)>Cu(II)>Ni(II)Zn(II)>Cd(II) approximately Co(II)>Mn(II). The high selectivity of metal binding is connected to the involvement of both imidazole and amide nitrogen atoms in metal binding for Pd(II), Cu(II) and Ni(II), while only the monodentate N(im)-coordination is possible with the other metal ions. The stoichiometry and binding mode of palladium(II) complexes show great variety depending on the metal ion to ligand ratio, pH and especially the presence of coordinating donor atoms in the side chains of peptide fragments. It is also clear from our data that the peptide fragments containing histidine outside the octarepeat (His96, His111 and His187) are more efficient ligands than the monomer peptide fragments of the octarepeat domain.  相似文献   

18.
In an effort to probe the structure of a group Bb metallo-beta-lactamase, Co(II)-substituted ImiS was prepared and characterized by electronic absorption, NMR, and EPR spectroscopies. ImiS containing 1 equiv of Co(II) (Co(II)(1)-ImiS) was shown to be catalytically active. Electronic absorption studies of Co(II)(1)-ImiS revealed the presence of two distinct features: (1) an intense sulfur to Co(II) ligand to metal charge transfer band and (2) less intense, Co(II) ligand field transitions that suggest 4-coordinate Co(II) in Co(II)(1)-ImiS. (1)H NMR studies of Co(II)(1)-ImiS suggest that one histidine, one aspartic acid, and one cysteine coordinate the metal ion in Co(II)(1)-ImiS. The addition of a second Co(II) to Co(II)(1)-ImiS did not result in any additional solvent-exchangeable NMR resonances, strongly suggesting that the second Co(II) does not bind to a site with histidine ligands. EPR studies reveal that the metal ion in Co(II)(1)-ImiS is 4-coordinate and that the second Co(II) is 5/6 coordinate. Taken together, these data indicate that the catalytic site in ImiS is the consensus Zn(2) site, in which Co(II) (and by extrapolation Zn(II)) is 4-coordinate and bound by Cys221, His263, Asp120, and probably one solvent water molecule. These studies also show that the second, inhibitory metal ion does not bind to the consensus Zn(1) site and that the metal ion binds at a site significantly removed from the active site. These results give the first structural information on metallo-beta-lactamase ImiS and suggest that the second metal binding site in ImiS may be targeted for inhibitors.  相似文献   

19.
Complexes of the type [M(bssdh)]Cl and [M(dspdh)]Cl, where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); Hbssdh = benzil salicylaldehyde succinic acid dihydrazone, Hdspdh = diacetyl salicylaldehyde phthalic acid dihydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra and X-ray diffraction studies. Magnetic moment values and electronic spectral transitions indicate a spin free octahedral structure for Co(II), Ni(II) and Cu(II) complexes. IR spectral studies suggest that both the ligands behave as monobasic hexadentate ligands coordinating through three > C = O, two > C = N- and a phenolate group to the metal. ESR spectra of Cu(II) complexes are axial type and suggest d(x(2)-y(2)) as the ground state. X-ray powder diffraction parameters for [Co(bssdh)]Cl and [Co(dspdh)]Cl complexes correspond to an orthorhombic crystal lattice. The ligands as well as their metal complexes show a significant antifungal and antibacterial activity against various fungi and bacteria. The metal complexes are more active than the parent ligands.  相似文献   

20.
ZntA from Escherichia coli is a P-type ATPase that confers resistance to Pb(II), Zn(II), and Cd(II) in vivo. We had previously shown that purified ZntA shows ATP hydrolysis activity with the metal ions Pb(II), Zn(II), and Cd(II). In this study, we utilized the acylphosphate formation activity of ZntA to further investigate the substrate specificity of ZntA. The site of phosphorylation was Asp-436, as expected from sequence alignments. We show that in addition to Pb(II), Zn(II), and Cd(II), ZntA is active with Ni(II), Co(II), and Cu(II), but not with Cu(I) and Ag(I). Thus, ZntA is specific for a broad range of divalent soft metal ions. The activities with Ni(II), Co(II), and Cu(II) are extremely low; the activities with these non-physiological substrates are 10-20-fold lower compared with the values obtained with Pb(II), Zn(II), and Cd(II). Similar results were obtained with DeltaN-ZntA, a ZntA derivative lacking the amino-terminal metal binding domain. By characterizing the acylphosphate formation reaction in ZntA in detail, we show that a step prior to enzyme phosphorylation, most likely the metal ion binding step, is the slow step in the reaction mechanism in ZntA. The low activities with Ni(II), Co(II), and Cu(II) are because of a further decrease in the rate of binding of these metal ions. Thus, metal ion selectivity in ZntA and possibly other P1-type ATPases is based on the charge and the ligand preference of particular metal ions but not on their size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号