首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulin receptor plays a vital role in mediating the actions of insulin. These include metabolic and mitogenic effects. This review will focus on the role of the insulin receptor isoforms in normal development and the pathogenesis of certain cancers and type 2 diabetes. There are two insulin receptor isoforms arising from the alternative splicing of exon 11 resulting in either the exon 11+ (IR-B) isoform (including 12 amino acids encoded by exon 11) or the exon 11- (IR-A) isoform. The isoforms have different affinities for insulin, IGF-II and IGF-I with the exon 11- isoform binding both insulin and IGF-II with high affinities. Interestingly, differential expression of the insulin receptor isoforms has been demonstrated in disease. Several cancer cell types that also overexpress IGF-II preferentially express the exon 11- isoform. Activation of the exon 11- insulin receptor by IGF-II and insulin results in mitogenic effects and a potentiation of the cancer phenotype. Also hyperinsulinemia has been associated with increased risk of cancer. Differential expression of the insulin receptor isoforms has also been demonstrated in type 2 diabetes although there is some discrepancy in the literature as to which isoform is expressed.  相似文献   

2.
Type 2 diabetes results from an impairment of insulin action. The first demonstrable abnormality of insulin signaling is a decrease of insulin-dependent glucose disposal followed by an increase in hepatic glucose production. In an attempt to dissect the relative importance of these two changes in disease progression, we have employed genetic knock-outs/knock-ins of the insulin receptor. Previously, we demonstrated that insulin receptor knock-out mice (Insr(-/-)) could be rescued from diabetes by reconstitution of insulin signaling in liver, brain, and pancreatic β cells (L1 mice). In this study, we used a similar approach to reconstitute insulin signaling in tissues that display insulin-dependent glucose uptake. Using GLUT4-Cre mice, we restored InsR expression in muscle, fat, and brain of Insr(-/-) mice (GIRKI (Glut4-insulin receptor knock-in line 1) mice). Unlike L1 mice, GIRKI mice failed to thrive and developed diabetes, although their survival was modestly extended when compared with Insr(-/-). The data underscore the role of developmental factors in the presentation of murine diabetes. The broader implication of our findings is that diabetes treatment should not necessarily target the same tissues that are responsible for disease pathogenesis.  相似文献   

3.
It has previously been shown that insulin is secreted in discrete secretory bursts by sampling directly from the portal vein in the dog and humans. Deficient pulsatile insulin secretion is the basis for impaired insulin secretion in type 2 diabetes. However, while novel genetically modified disease models of diabetes are being developed in rodents, no validated method for quantifying pulsatile insulin secretion has been established for rodents. To address this we 1) developed a novel rat model with chronically implanted portal vein catheters, 2) established the parameters to permit deconvolution of portal vein insulin concentrations profiles to measure insulin secretion and resolve its pulsatile components, and 3) measured total and pulsatile insulin secretion compared with that in the dog, the species in which this sampling and deconvolution approach was validated for quantifying pulsatile insulin secretion. In rats, portal vein catheter patency and function were maintained for periods up to 2-3 wk with no postoperative complications such as catheter tract infection. Rat portal vein insulin concentration profiles in the fasting state revealed distinct insulin oscillations with a periodicity of approximately 5 min and an amplitude of up to 600 pmol/l, which was remarkably similar to that in the dogs and in humans. Deconvolution analysis of portal vein insulin concentrations revealed that the majority of insulin ( approximately 70%) in the rat is secreted in distinct insulin pulses occurring at approximately 5-min intervals. This model therefore permits direct accurate measurements of pulsatile insulin secretion in a relatively inexpensive animal. With increased introduction of genetically modified rat models will be an important tool in elucidating the underlying mechanisms of impaired pulsatile insulin secretion in diabetes.  相似文献   

4.
Insulin resistance has been proposed as a critical factor in the development of Type II diabetes, hypertension, dyslipidemia, and coronary artery disease. However, even in normal healthy individuals, a wide range of in vivo insulin action has been found. In the present study we sought to examine this heterogeneity in Insulin action in both normal and spontaneously obese nonhuman primates. Maximal insulin responsiveness as measured by a hyperinsulinemic euglycemic clamp, fasting plasma glucose, and insulin levels, β-cell insulin response to glucose, glucose tolerance, and adiposity were measured in 22 male rhesus monkeys. Results showed that lean animals (body fat ≤ 22%) had higher insulin-stimulated glucose uptake (M rate: 14.42±1.8 mg/kg FFM/min) compared to obese (8.08±0.8). The obese monkeys, with 23–49% body fat, had a wide range of M values (5.32-14.29 mg/kg FFM/min) which showed no relationship to degree of adiposity. In all monkeys, M values had a strong inverse correlation with fasting plasma insulin levels (r=-0.76; p<0.001), but not with fasting glucose or glucose disappearance rate. We conclude that neither degree of obesity above a critical threshold nor range of glucose tolerance is related to insulin resistance; however, in individuals with normal glucose tolerance an early reliable indicator of defective insulin action appears to be fasting insulin concentration. Longitudinal determination of basal insulin levels obtained under standardized conditions so as to minimize extraneous variability is likely to strengthen the ability to predict insulin resistance and possible later development of overt Type II diabetes.  相似文献   

5.
Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimer's disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.  相似文献   

6.
Summary Insulin is able to stimulate a growth response in a variety of different cell types. However, the role of the insulin receptor in mediating this response is not clear. Indeed, it has been reported that the ability of insulin to stimulate a growth response is a result of its interaction with other growth factor receptors rather than the insulin receptor.We have previously reported that the H-35 hepatoma cell line responded to physiological concentrations of insulin as a growth factor and that the relative potency of proinsulin suggested that this response was mediated by the insulin receptor. In this report, two experimental approaches are used to demonstrate the involvement of the insulin receptor in mediating the growth response. Two different preparations of antibody to the insulin receptor are found to be capable of stimulating this response. In addition, the human insulin-like growth factors (IGF-I and II) show very low cross-reactivity with the insulin receptor and are significantly less potent than insulin in stimulating the growth response.Abbrevations IGF insulin-like growth factor - MSA multiplication stimulating activity - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  相似文献   

7.
Alzheimer's disease is the most common form of dementia among older people and is still untreatable. While ??-amyloid protein is recognized as the disease determinant with a pivotal role in inducing neuronal loss and dementia, an impaired brain insulin signaling seems to account in part for the cognitive deficit associated with the disease. The origin of this defective signaling is uncertain. Accumulating toxic species of ??-amyloid, the so-called oligomers, has been proposed to be responsible for downregulation of neuronal insulin receptors. We have found that the nontoxic form of ??-amyloid, the monomer, is able to activate insulin/insulin-like growth factor-1 (IGF-1) receptor signaling and thus behaves as a neuroprotectant agent. Our suggestion is that depletion of ??-amyloid monomers, occurring in the preclinical phase of Alzheimer's disease, might be the cause of early insulin/IGF-1 signaling disturbances that anticipate cognitive decline.  相似文献   

8.
J R Florini  D Z Ewton 《In vitro》1981,17(9):763-768
A serum-free medium that supports the proliferation of myoblasts (but not of fibroblasts) has been developed recently in this laboratory. It is composed of 10(-6) M insulin, 10(-7) M dexamethasone, and 10(-5) M fetuin, and is designated medium MM-1. The latter two components gave optimal stimulation at or near "physiological" concentrations, but insulin was required at levels far in excess of those found in serum. Accordingly, we have now investigated the possibility that insulin acts as a weak analog of the somatomedins, as has been suggested in other systems. We found that maximal growth rates were observed when 10(-6) M insulin was replaced by 0.5 to 1.0 microgram/ml multiplication stimulating activity (MSA), indicating that insulin serves a somatomedinlike function of MM-1. We also investigated the possibility that a contaminant of fetuin is responsible for its action in MM-1 but found no evidence to support this suggestion. We conclude that MM-1 is suitable for the study of muscle cell growth and differentiation under rather well-defined conditions, and that insulin probably is serving as a somatomedin analog in this medium.  相似文献   

9.

Background

Many people who are not obese according to standard height and weight criteria may still display features of insulin resistance syndrome and thus be at high risk of ischemic heart disease. We sought to investigate the effect of cumulative features of insulin resistance syndrome on the risk of ischemic heart disease associated with variations in body mass index (BMI) among men who participated in the Québec Cardiovascular Study.

Methods

A cohort of 1824 nondiabetic men free of ischemic heart disease was evaluated at the 1985 baseline evaluation and followed for a period of 13 years, during which 284 first ischemic heart disease events were recorded. Relative hazards (RHs) of ischemic heart disease in 3 BMI groups (normal weight, overweight and obese) were estimated using Cox proportional hazards regression.

Results

Although obese men (BMI ≥ 30 kg/m2) were the most likely to accumulate features of insulin resistance syndrome, the univariate risk of ischemic heart disease in this group was not significantly increased compared with normal-weight men (BMI < 25 kg/m2) (RH 1.26, 95% confidence interval [CI] 0.88–1.80). However, obese men who accumulated more than 4 features of insulin resistance syndrome were at increased risk of ischemic heart disease (RH 1.81, 95% CI 1.02–3.19) compared with normal-weight men who had fewer than 3 features of the syndrome. Conversely, having more than 4 features of insulin resistance syndrome was associated with a 3-fold increase in the risk of ischemic heart disease among normal-weight men (RH 3.01, 95% CI 1.70–5.32).

Interpretation

Although obesity is an important risk factor for ischemic heart disease, variations in BMI alone poorly reflect the risk of ischemic heart disease associated with features of insulin resistance syndrome.In the late 1980s, Gerald Reaven proposed the concept of insulin resistance as the cornerstone of a plurimetabolic syndrome that included hypertriglyceridemia, low plasma high-density lipoprotein cholesterol concentrations, hypertension and hyperinsulinemia.1 This syndrome has been referred to as syndrome X, insulin resistance syndrome and the metabolic syndrome.2 Several other metabolic disturbances, such as an increase in the number of small, dense low-density lipoprotein particles, impaired fibrinolytic activity, a proinflammatory state, impaired postprandial lipoprotein metabolism and abdominal obesity, have been included as part of this syndrome over the years.3,4Although obesity is an important component of insulin resistance syndrome, many people who are not obese according to standard height and weight criteria (i.e., body mass index [BMI]) may still display features of the syndrome. Indeed, studies have indicated that normal-weight subjects, whose BMI is less than 25 kg/m2, may have as much as 40% fat in the abdominal area, a level that correlates closely with decreased insulin sensitivity5 and an atherogenic dyslipidemic state. In that context, the risk of ischemic heart disease among normal-weight people with insulin resistance syndrome and among obese people without insulin resistance syndrome represents a major gap in the existing literature. We therefore sought to investigate how features of insulin resistance syndrome affected the risk of ischemic heart disease associated with variations in BMI in a cohort of 1824 men who participated in the Québec Cardiovascular Study.  相似文献   

10.
Glutamate dehydrogenase (GDH) plays an important role in insulin secretion as evidenced in children by gain of function mutations of this enzyme that cause a hyperinsulinism-hyperammonemia syndrome (GDH-HI) and sensitize beta-cells to leucine stimulation. GDH transgenic mice were generated to express the human GDH-HI H454Y mutation and human wild-type GDH in islets driven by the rat insulin promoter. H454Y transgene expression was confirmed by increased GDH enzyme activity in islets and decreased sensitivity to GTP inhibition. The H454Y GDH transgenic mice had hypoglycemia with normal growth rates. H454Y GDH transgenic islets were more sensitive to leucine- and glutamine-stimulated insulin secretion but had decreased response to glucose stimulation. The fluxes via GDH and glutaminase were measured by tracing 15N flux from [2-15N]glutamine. The H454Y transgene in islets had higher insulin secretion in response to glutamine alone and had 2-fold greater GDH flux. High glucose inhibited both glutaminase and GDH flux, and leucine could not override this inhibition. 15NH4Cl tracing studies showed 15N was not incorporated into glutamate in either H454Y transgenic or normal islets. In conclusion, we generated a GDH-HI disease mouse model that has a hypoglycemia phenotype and confirmed that the mutation of H454Y is disease causing. Stimulation of insulin release by the H454Y GDH mutation or by leucine activation is associated with increased oxidative deamination of glutamate via GDH. This study suggests that GDH functions predominantly in the direction of glutamate oxidation rather than glutamate synthesis in mouse islets and that this flux is tightly controlled by glucose.  相似文献   

11.
The increasing prevalence of overnutrition and reduced activity has led to a worldwide epidemic of obesity. In many cases, this is associated with insulin resistance, an inability of the hormone to direct its physiological actions appropriately. A number of disease states accompany insulin resistance such as type 2 diabetes mellitus, the metabolic syndrome, and non-alcoholic fatty liver disease. Though the pathways by which insulin controls hepatic glucose output have been of intense study in recent years, considerably less attention has been devoted to how lipid metabolism is regulated. Thus, both the proximal signaling pathways as well as the more distal targets of insulin remain uncertain. In this review, we consider the signaling pathways by which insulin controls the synthesis and accumulation of lipids in the mammalian liver and, in particular, how this might lead to abnormal triglyceride deposition in liver during insulin-resistant states.  相似文献   

12.
Obesity-linked type 2 diabetes is a disease of insulin resistance combined with pancreatic beta-cell dysfunction. Although a role for beta-cell mass in the pathogenesis of obesity-linked type 2 diabetes has recently gained prominence, the idea is still being developed. It is proposed that in early obesity an increase in beta-cell mass and function might compensate for peripheral insulin resistance. However, as time and/or the severity of the obesity continue, there is decay in such adaptation and the beta-cell mass becomes inadequate. This, together with beta-cell dysfunction, leads to the onset of type 2 diabetes. It is becoming evident that elements in insulin and insulin growth factor (IGF)-1 signal-transduction pathways are key to regulating beta-cell growth. Current evidence indicates that interference of insulin signaling in obesity contributes to peripheral insulin resistance. This article examines whether a similar interference of IGF-1 signaling in the beta-cell could hinder upregulation of beta-cell mass and/or function, resulting in a failure to compensate for insulin resistance.  相似文献   

13.
Insulin signaling to hepatic lipid metabolism in health and disease   总被引:1,自引:0,他引:1  
The increasing prevalence of overnutrition and reduced activity has led to a worldwide epidemic of obesity. In many cases, this is associated with insulin resistance, an inability of the hormone to direct its physiological actions appropriately. A number of disease states accompany insulin resistance such as type 2 diabetes mellitus, the metabolic syndrome, and non-alcoholic fatty liver disease. Though the pathways by which insulin controls hepatic glucose output have been of intense study in recent years, considerably less attention has been devoted to how lipid metabolism is regulated. Thus, both the proximal signaling pathways as well as the more distal targets of insulin remain uncertain. In this review, we consider the signaling pathways by which insulin controls the synthesis and accumulation of lipids in the mammalian liver and, in particular, how this might lead to abnormal triglyceride deposition in liver during insulin-resistant states.  相似文献   

14.
Hyperinsulinemia has recently been reported as a risk factor for atherosclerotic diseases such as coronary heart disease; however, the effect of insulin on the development of atherosclerosis is not well understood. Here we have investigated the direct effect of insulin on macrophages, which are known to be important in the atherosclerotic process. We treated THP-1 macrophages with insulin (10(-7) m) and examined the gene expression using nucleic acid array systems. The results of array analysis showed that insulin stimulated gene expression of tumor necrosis factor-alpha (TNF-alpha) the most among all genes in the analysis. In addition, insulin administration to macrophages enhanced both mRNA expression and protein secretion of TNF-alpha in a dose-dependent manner. To determine the signaling pathway involved in this TNF-alpha response to insulin, we pretreated the cells with three distinct protein kinase inhibitors: wortmannin, PD98059, and SB203580. Only PD98059, which inhibits extracellular signal-regulated kinases, suppressed insulin-induced production of TNF-alpha mRNA and protein in THP-1 macrophages. These observations indicate that insulin stimulates TNF-alpha production in macrophages by regulating the expression of TNF-alpha mRNA and that the extracellular signal-regulated kinase signaling pathway may have a critical role in stimulating the production of TNF-alpha in response to insulin in macrophages.  相似文献   

15.
Cardiovascular disease is the leading cause of morbidity and mortality in the industrialized world. Familial aggregation of cardiovascular risk factors is a frequent finding, but genetic factors affecting its presentation are still poorly understood. The calpain 10 gene (CAPN10) has been associated with type 2 diabetes (T2DM), a complex metabolic disorder with increased risk of cardiovascular disease. Moreover, the CAPN10 gene has been associated with the presence of metabolic syndrome (MS) in T2DM and in polycystic ovary syndrome (PCOS). In this work, we have analysed whether the polymorphisms UCSNP44, -43, -19 and -63 are related to several cardiovascular risk factors in the context of MS. Molecular analysis of CAPN10 gene was performed in 899 individuals randomly chosen from a cross-sectional population-based epidemiological survey. We have found that CAPN10 gene in our population is mainly associated with two indicators of the presence of insulin resistance: glucose levels two hours after a 75-g oral glucose tolerance test (OGTT) and HOMA values, although cholesterol levels and blood pressure values are also influenced by CAPN10 variants. In addition, the 1221/1121 haplogenotype is under-represented in individuals that fulfil the International Diabetes Federation (IDF) diagnostic criteria for MS. Our results suggest that CAPN10 gene is associated with insulin resistance phenotypes in the Spanish population.  相似文献   

16.
Akt plays a major role in insulin regulation of metabolism in muscle, fat, and liver. Here, we show that in 3T3-L1 adipocytes, Akt operates optimally over a limited dynamic range. This indicates that Akt is a highly sensitive amplification step in the pathway. With robust insulin stimulation, substantial changes in Akt phosphorylation using either pharmacologic or genetic manipulations had relatively little effect on Akt activity. By integrating these data we observed that half-maximal Akt activity was achieved at a threshold level of Akt phosphorylation corresponding to 5-22% of its full dynamic range. This behavior was also associated with lack of concordance or demultiplexing in the behavior of downstream components. Most notably, FoxO1 phosphorylation was more sensitive to insulin and did not exhibit a change in its rate of phosphorylation between 1 and 100 nm insulin compared with other substrates (AS160, TSC2, GSK3). Similar differences were observed between various insulin-regulated pathways such as GLUT4 translocation and protein synthesis. These data indicate that Akt itself is a major amplification switch in the insulin signaling pathway and that features of the pathway enable the insulin signal to be split or demultiplexed into discrete outputs. This has important implications for the role of this pathway in disease.  相似文献   

17.
Obesity is commonly associated with development of insulin resistance and systemic evidence of inflammation. Macrophages contribute to inflammatory amplification in obesity and may contribute directly to insulin resistance and the development of nonalcoholic fatty liver disease through the production of inflammatory cytokines, including tumor necrosis factor (TNF)-alpha. To test this hypothesis, we transplanted male wild-type (WT) and TNF-alpha deficient (KO) mice with either TNF-alpha-sufficient (TNF-alpha(+/+)) or TNF-alpha-deficient (TNF-alpha(-/-)) bone marrow. After consuming a high-fat diet for 26 wk, metabolic and morphometric characteristics of the animals were analyzed. While there were no differences in terms of relative weight gain, body composition analysis yielded a lower relative adipose and higher relative lean mass in mice lacking TNF-alpha, which was partially explained by reduced epididymal fat pad and liver weight. TNF-alpha(-/-) -->KO mice exhibited enhanced insulin sensitivity compared with that observed in TNF-alpha(+/+)-->KO mice; remarkably, no protection against insulin resistance was provided by transplanting TNF-alpha(-/-) bone marrow in WT mice compared with TNF-alpha(+/+)-->WT. The preserved insulin sensitivity seen in TNF-alpha(-/-)-->KO mice provided protection against the development of hepatic steatosis. Taken together, these data indicate that macrophage-derived TNF-alpha contributes to the pattern and extent of fat accumulation and insulin resistance in diet-induced obesity; however, this contribution is negligible in the presence of host-derived TNF-alpha.  相似文献   

18.
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with insulin resistance, oxidative stress, and inflammation. Evidence indicates that chromium has a role in the regulation of glucose and lipid metabolism and may improve insulin sensitivity. In this study, we report that chromium supplementation has a beneficial effect against NAFLD. We found that KK/HlJ mice developed obesity and progressed to NAFLD after feeding with high-fat diet for 8 weeks. High-fat-fed KK/HlJ mice showed hepatocyte injury and hepatic triglyceride accumulation, which was accompanied by insulin resistance, oxidative stress, and inflammation. Chromium supplementation prevented progression of NAFLD and the beneficial effects were accompanied by reduction of hepatic triglyceride accumulation, elevation of hepatic lipid catabolic enzyme, improvement of glucose and lipid metabolism, suppression of inflammation as well as resolution of oxidative stress, probably through enhancement of insulin signaling. Our findings suggest that chromium could serve as a hepatoprotective agent against NAFLD.  相似文献   

19.
Obesity is essentially an excessive accumulation of triacylglycerols in fatty tissue that is the net result of excessive energy intake compared to energy usage. Severe forms of the disease are most likely to have a predominantly genetic basis and this is probably polygenic. The 'thrifty gene' hypothesis also describes the disturbance that a modern environment, including higher energy intake and decreased physical activity, has on otherwise advantageous genetic variations. While the physical consequences of obesity, such as arthritis, are debilitating and costly, the metabolic consequences are the drivers behind the modern epidemics of insulin resistance, diabetes, fatty liver disease, coronary artery disease, hypertension and polycystic ovary syndrome. The pathophysiological mechanisms behind these diseases are probably a combination of the toxic metabolic effects of free fatty acids and adipokines - the numerous messengers that adipose tissue has been discovered to produce.  相似文献   

20.
The cardiometabolic syndrome (CMS), with its increased risk for cardiovascular disease (CVD), nonalcoholic fatty liver disease (NAFLD), and chronic kidney disease (CKD), has become a growing worldwide health problem. Insulin resistance is a key factor for the development of the CMS and is strongly related to obesity, hyperlipidemia, hypertension, type 2 diabetes mellitus (T2DM), CKD, and NAFLD. Insulin resistance in skeletal muscle is particularly important since it is normally responsible for more than 75% of all insulin-mediated glucose disposal. However, the molecular mechanisms responsible for skeletal muscle insulin resistance remain poorly defined. Accumulating evidence indicates that low-grade chronic inflammation and oxidative stress play fundamental roles in the development of insulin resistance, and inflammatory cytokines likely contribute to the link between inflammation, oxidative stress, and skeletal muscle insulin resistance. Understanding the mechanisms by which skeletal muscle tissue develops resistance to insulin will provide attractive targets for interventions, which may ultimately curb this serious problem. This review is focused on the effects of inflammatory cytokines and oxidative stress on insulin signaling in skeletal muscle and consequent development of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号