首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies suggested that natural compounds are important in finding targets for cancer treatments. Autophagy (“self-eating”) plays important roles in multiple diseases and acts as a tumor suppressor in cancer. Here, we examined the molecular mechanism by which natural agents regulate autophagic signals. Understanding the relationship between natural agents and cellular autophagy may provide more information for cancer diagnosis and chemoprevention.  相似文献   

2.
Protein kinases orchestrate the activation of signaling cascades in response to extracellular and intracellular stimuli to control cell growth, proliferation, and survival. The complexity of numerous intracellular signaling pathways is highlighted by the number of kinases encoded by the human genome (539) and the plethora of phosphorylation sites identified in phosphoproteomic studies. Perturbation of these signaling networks by mutations or abnormal protein expression underlies the cause of many diseases including cancer. Recent RNAi screens and cancer genomic sequencing studies have revealed that many more kinases than anticipated contribute to tumorigenesis and are potential targets for inhibitor drug development intervention. This review will highlight recent insights into known pathways essential for tumorigenesis and discuss exciting new pathways for therapeutic intervention.  相似文献   

3.

Background  

Formation of cellular malignancy results from the disruption of fine tuned signaling homeostasis for proliferation, accompanied by mal-functional signals for differentiation, cell cycle and apoptosis. We wanted to observe central signaling characteristics on a global view of malignant cells which have evolved to selfishness and independence in comparison to their non-malignant counterparts that fulfill well defined tasks in their sample.  相似文献   

4.
5.
6.
For about four decades, platelet-derived growth factors (PDGF) and their receptors have been the subject of intense research, revealing their roles in embryo development and human diseases. Drugs such as imatinib, which selectively inhibit the tyrosine kinase activity of these receptors, have been approved for the treatment of cancers such as gastrointestinal stromal tumors and chronic eosinophilic leukemia. Today, the interest in these factors is still increasing in relationship with new potential clinical applications in cancer, stroke, fibrosis and infectious diseases. This review focuses on the mechanisms of PDGF receptor signaling, with an emphasis on pathways that are important for disease development. Of particular interest, recent studies revealed significant differences between normal and cancer cells regarding signal transduction by these growth factors.  相似文献   

7.
Autophagy (macroautophagy), an evolutionarily conserved lysosomal degradation process, is implicated in a wide variety of pathological processes including cancer. Autophagy plays the Janus role in regulating several survival or death signaling pathways that may decide the fate of cancer cell. Accumulating evidence has revealed the core molecular machinery of autophagy in tumor initiation and progression; however, the intricate relationships between autophagy and cancer are still in its infancy. In this review, we summarize several key survival/death pathways such as mTOR subnetwork, Beclin 1 interactome, and p53 signaling that may play the crucial roles for the regulation of the autophagy-related cancer networks. Therefore, a better understanding of the relationships between autophagy and cancer may ultimately allow cancer biologists and clinicians to harness core autophagic pathways for the discovery of potential novel drug targets.  相似文献   

8.
Poliovirus (PV), like many positive-strand RNA viruses, subverts the macroautophagy/autophagy pathway to promote its own replication. Here, we investigate whether the virus uses the canonical autophagic signaling complex, consisting of the ULK1/2 kinases, ATG13, RB1CC1, and ATG101, to activate autophagy. We find that the virus sends autophagic signals independent of the ULK1 complex, and that the members of the autophagic complex are not required for normal levels of viral replication. We also show that the SQSTM1/p62 receptor protein is not degraded in a conventional manner during infection, but is likely cleaved in a manner similar to that shown for coxsackievirus B3. This means that SQSTM1, normally used to monitor autophagic degradation, cannot be used to accurately monitor degradation during poliovirus infection. In fact, autophagic degradation may be affected by the loss of SQSTM1 at the same time as autophagic signals are being sent. Finally, we demonstrate that ULK1 and ULK2 protein levels are greatly reduced during PV infection, and ATG13, RB1CC1, and ATG101 protein levels are reduced as well. Surprisingly, autophagic signaling appears to increase as ULK1 levels decrease. Overexpression of wild-type or dominant-negative ULK1 constructs does not affect virus replication, indicating that ULK1 degradation may be a side effect of the ULK1-independent signaling mechanism used by PV, inducing complex instability. This demonstration of ULK1-independent autophagic signaling is novel and leads to a model by which the virus is signaling to generate autophagosomes downstream of ULK1, while at the same time, cleaving cargo receptors, which may affect cargo loading and autophagic degradative flux. Our data suggest that PV has a finely-tuned relationship with the autophagic machinery, generating autophagosomes without using the primary autophagy signaling pathway.

Abbreviations: ACTB - actin beta; ATG13 - autophagy related 13; ATG14 - autophagy related 14; ATG101 - autophagy related 101; BECN1 - beclin 1; CVB3 - coxsackievirus B3; DMV - double-membraned vesicles; EM - electron microscopy; EMCV - encephalomyocarditis virus; EV-71 - enterovirus 71; FMDV - foot and mouth disease virus; GFP - green fluorescent protein; MAP1LC3B/LC3B - microtubule associated protein 1 light chain 3 beta; MOI - multiplicity of infection; MTOR - mechanistic target of rapamycin kinase; PIK3C3 - phosphatidylinositol 3-kinase catalytic subunit type 3; PRKAA2 - protein kinase AMP-activated catalytic subunit alpha 2; PSMG1 - proteasome assembly chaperone 1; PSMG2 - proteasome assembly chaperone 2PV - poliovirus; RB1CC1 - RB1 inducible coiled-coil 1; SQSTM1 - sequestosome 1; ULK1 - unc-51 like autophagy activating kinase 1; ULK2 - unc-51 like autophagy activating kinase 2; WIPI1 - WD repeat domain, phosphoinositide interacting 1  相似文献   


9.
10.
11.
Apoptotic response in hepatocellular carcinoma (HCC) cells is impaired because of interconnectivity of proteins into complexes and signaling networks that are highly divergent in time and space. TNF-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive anticancer agent reported to selectively induce apoptosis in cancer cells. Although diametrically opposed roles of TRAIL are reported both as an inducer of apoptosis and regulator of metastasis, overwhelmingly accumulating experimental evidence highlighting apoptosis inducing activity of TRAIL is directing TRAIL into clinical trials. Insights from TRAIL mediated signaling in HCC research are catalyzing new lines of study that should not only explain molecular mechanisms of disease but also highlight emerging paradigms in restoration of TRAIL mediated apoptosis in resistant cancer cells. It is becoming progressively more understandable that phytochemicals derived from edible plants have shown potential in modelling their interactions with their target proteins. Rapidly accumulating in vitro and in-vivo evidence indicates that phytonutrients have anticancer activity in rodent models of hepatocellular carcinoma. In this review we bring to limelight how phytonutrients restore apoptosis in hepatocellular carcinoma cells by rebalancing pro-apoptotic and anti-apoptotic proteins. Evidence has started to emerge, that reveals how phytonutrients target pharmacologically intractable proteins to suppress cancer. Target-based small-molecule discovery has entered into the mainstream research in the pharmaceutical industry and a better comprehension of the genetics of patients will be essential for identification of responders and non-responders.  相似文献   

12.
Inhibition of autophagic proteolysis by hypoosmotic or amino acid-induced hepatocyte swelling requires osmosignaling toward p38MAPK; however, the upstream osmosensing and signaling events are unknown. These were studied in the intact perfused rat liver with a preserved in situ environment of hepatocytes. It was found that hypoosmotic hepatocyte swelling led to an activation of Src (but not FAK), Erks, and p38MAPK, which was prevented by the integrin inhibitory hexapeptide GRGDSP, but not its inactive analogue GRGESP. Src inhibition by PP-2 prevented hypoosmotic MAP kinase activation, indicating that the integrin/Src system is located upstream in the osmosignaling toward p38MAPK and Erks. Inhibition of the integrin/Src system by the RGD motif-containing peptide or PP-2 also prevented the inhibition of proteolysis and the decrease in autophagic vacuole volume, which is otherwise observed in response to hypoosmotic or glutamine/glycine-induced hepatocyte swelling. These inhibitors, however, did not affect swelling-independent proteolysis inhibition by phenylalanine. In line with a role of p38MAPK in triggering the volume regulatory decrease (RVD), PP-2 and the RGD peptide blunted RVD in response to hypoosmotic cell swelling. The data identify integrins and Src as upstream events in the osmosignaling toward MAP kinases, proteolysis, and RVD. They further point to a role of integrins as osmo- and mechanosensors in the intact liver, which may provide a link between cell volume and cell function.  相似文献   

13.
We have recently described that autophagic targeting of Src maintains cancer cell viability when FAK signalling is defective. Here, we show that the Ret tyrosine kinase is also degraded by autophagy in cancer cells with altered/reduced FAK signalling, preventing its binding to FAK at integrin adhesions. Inhibition of autophagy restores Ret localization to focal adhesions. Importantly, Src kinase activity is required to target Ret to autophagosomes and enhance Ret degradation. Src is thus a general mediator of selective autophagic targeting of adhesion-linked kinases, and Ret a second FAK-binding tyrosine kinase degraded through autophagy in cancer cells under adhesion stress. Src-by controlling not only its own degradation but also that of other FAK-binding partners-allows cancer cell survival, suggesting a new therapeutic strategy.  相似文献   

14.
15.
Although databases for cell signaling pathways include numbers of reaction data of the pathways, the reaction data cannot be used yet to deduce biological functions from them. For the deduction, we need systematic and consistent interpretation of biological functions of reactions in cell signaling pathways in the context of "information transmission". To address this issue, we have developed a functional ontology for cell signaling pathways, Cell Signaling Network Ontology (CSN-Ontology), which provides framework for the functional interpretation presenting some important concepts as information, selectivity, movability, and signaling rules including passage of time.  相似文献   

16.
Modeling of signaling networks   总被引:8,自引:0,他引:8  
Biochemical networks, including those containing signaling pathways, display a wide range of regulatory properties. These include the ability to propagate information across different time scales and to function as switches and oscillators. The mechanisms underlying these complex behaviors involve many interacting components and cannot be understood by experiments alone. The development of computational models and the integration of these models with experiments provide valuable insight into these complex systems-level behaviors. Here we review current approaches to the development of computational models of biochemical networks and describe the insights gained from models that integrate experimental data, using three examples that deal with ultrasensitivity, flexible bistability and oscillatory behavior. These types of complex behavior from relatively simple networks highlight the necessity of using theoretical approaches in understanding higher order biological functions.  相似文献   

17.
18.
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy–lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.  相似文献   

19.
Cell signaling pathways interact with one another to form networks in mammalian systems. Such networks are complex in their organization and exhibit emergent properties such as bistability and ultrasensitivity. Analysis of signaling networks requires a combination of experimental and theoretical approaches including the development and analysis of models. This review focuses on theoretical approaches to understanding cell signaling networks. Using heterotrimeric G protein pathways an example, we demonstrate how interactions between two pathways can result in a network that contains a positive feedback loop and function as a switch. Different mathematical approaches that are currently used to model signaling networks are described, and future challenges including the need for databases as well as enhanced computing environments are discussed.  相似文献   

20.
Brassinosteroids in plant developmental signaling networks   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号