首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A novel protease, hydrolyzing azocasein, was identified, purified, and characterized from the culture supernatant of the fish pathogen Yersinia ruckeri. Exoprotease production was detected at the end of the exponential growth phase and was temperature dependent. Activity was detected in peptone but not in Casamino Acid medium. Its synthesis appeared to be under catabolite repression and ammonium control. The protease was purified in a simple two-step procedure involving ammonium sulfate precipitation and ion-exchange chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the purified protein indicated an estimated molecular mass of 47 kDa. The protease had characteristics of a cold-adapted protein, i.e., it was more active in the range of 25 to 42°C and had an optimum activity at 37°C. The activation energy for the hydrolysis of azocasein was determined to be 15.53 kcal/mol, and the enzyme showed a rapid decrease in activity at 42°C. The enzyme had an optimum pH of around 8. Characterization of the protease showed that it required certain cations such as Mg2+ or Ca2+ for maximal activity and was inhibited by EDTA, 1,10-phenanthroline, and EGTA but not by phenylmethylsulfonyl fluoride. Two N-methyl-N-nitro-N-nitrosoguanidine mutants were isolated and analyzed; one did not show caseinolytic activity and lacked the 47-kDa protein, while the other was hyperproteolytic and produced increased amounts of the 47-kDa protein. Azocasein activity, SDS-PAGE, immunoblotting by using polyclonal anti-47-kDa-protease serum, and zymogram analyses showed that protease activity was present in 8 of 14 strains tested and that two Y. ruckeri groups could be established based on the presence or absence of the 47-kDa protease.  相似文献   

2.
Enzymes, especially proteases, have become an important and indispensable part of the processes used by the modern food and feed industry to produce a large and diversified range of products for human and animal consumption. A cysteine protease, used extensively in the food industry, was purified from germinated wheat Triticum aestivum (cv. Giza 164) grains through a simple reproducible method consisting of extraction, ion exchange chromatography and gel filtration. The molecular weight of the enzyme was estimated to be 61000+/-1200-62000+/-1500 by SDS-PAGE and gel filtration. The cysteine protease had an isoelectric point and pH optimum at 4.4 and 4.0, respectively. The enzyme exhibited more activity toward azocasein than the other examined substrates with K(m) 2.8+/-0.15 mg azocasein/ml. In addition, it had a temperature optimum of 50 degrees C and based on a heat stability study 55% of its initial activity remained after preincubation of the enzyme at 50 degrees C for 30 min prior to substrate addition. All the examined metal cations inhibited the enzyme except Co(2+), Mg(2+), Mn(2+) and Li(+). The proteolytic activity of the enzyme was inhibited by thiol-specific inhibitors, whereas iodoacetate and p-hydroxymercuribenzoate caused a competitive inhibition with Ki values 6+/-0.3 mM and 21+/-1.2 microM, respectively. Soybean trypsin inhibitor had no effect on the enzyme. The enzyme activity remained almost constant for 150 days of storage at -20 degrees C. The properties of this enzyme, temperature and pH optima, substrate specificity, stability and sensitivity to inhibitors or activators, meet the prerequisites needed for food industries.  相似文献   

3.
An aprotinin sensitive serine protease was identified in the culture supernatant of the Indian strain of Leishmania donovani (MHOM/IN/1983/AG83). The protease was subsequently purified and characterized. The apparent molecular mass of the enzyme was 115 kDa in SDS-PAGE under non-reducing condition, while on reduction it showed a 56 kDa protein band indicating that the protease is a dimeric protein. The purified enzyme was optimally active at the pH and temperature of 7.5 and 28 degrees C, respectively. Assays of thermal stability indicated that the enzyme preserved 59% of activity even after pretreatment at 42 degrees C for 1 h. The purified protease was not glycosylated and its isoelectric pI was 5.0. N-alpha-p-tosyl-L-arginine methylester (TAME) appeared to be relatively better substrate among the commonly used synthetic substrates. The enzyme was inhibited by Ca(2+) and Mn(2+), but activated by Zn(2+). The protease could play important role(s) in the pathogenesis of visceral leishmaniasis or kala-azar.  相似文献   

4.
Li J  Chi Z  Wang X 《Microbiological research》2010,165(3):173-182
The SAP6 gene (without signal sequence) encoding Metschnikowia reukaufii acid protease was amplified by PCR and fused to the expression vector pET-24a(+). The carboxy-terminal 6x His-tagged recombinant acid protease (rSAP6) was expressed from pET-24a(+)SAP6-6His in Escherichia coli BL21 (DE3) and purified with affinity chromatography using a Ni-NTA column. SDS-PAGE analysis and Western blotting revealed that the molecular mass of the purified rSAP6 was 54kDa. The optimal temperature and pH of the purified rSAP6 were 40 degrees C and 3.4, respectively. The enzyme was stable below 45 degrees C and between pH 2.6 and 5.0. The results show that Mn(2+) had an activating effect on the enzyme, while Cu(2+), Mg(2+), Zn(2+) and Ag(+) acted as inhibitors of the enzyme. However, Ca(2+) had no effect on the enzyme activity. The purified rSAP6 was characterized as an aspartic protease as it was inhibited by aspartic protease-specific inhibitors, such as pepstatin. It was also found that the purified rSAP6 had milk-clotting activity.  相似文献   

5.
Bacillus cereus KCTC 3674 excretes several kinds of extracellular proteases into the growth medium. Two proteases with molecular masses of approximately 36-kDa and 38-kDa, as shown by SDS-PAGE, were purified from the culture broth. The 38-kDa protease was purified from B. cereus cultivated at 37 degrees C, and the 36-kDa protease was obtained from the B. cereus cultivated at 20 degrees C. The 38-kDa protease was identified as an extracellular neutral (metallo-) protease and was further characterized. The 36-kDa protease was shown to be a novel enzyme based on its N-terminal amino acid sequence, its identification as a metallo-enzyme that was strongly inhibited by EDTA and o-phenanthroline, its hemolysis properties, and its optimal pH and temperature for activity of 8.0 and 70 degrees C, respectively.  相似文献   

6.
Extracellular acid and alkaline proteases from Candida olea   总被引:3,自引:0,他引:3  
Candida olea 148 secreted a single acid protease when cultured at acidic pH. In unbuffered medium, the culture pH eventually became alkaline and a single alkaline protease was produced. This was the only proteolytic enzyme produced when the organism was grown in buffered medium at alkaline pH. Both proteolytic enzymes were purified to homogeneity (as assessed by SDS-PAGE). The Mr of the acid protease was 30900, the isoelectric point 4.5; optimum activity against haemoglobin was at 42 degrees C and pH 3.3. This enzyme was inactivated at temperatures above 46 degrees C and was inhibited by either pepstatin and diazoacetyl-norleucine methyl ester but was insensitive to inhibition by either 1,2-epoxy-3-(p-nitrophenoxy)-propane or compounds known to inhibit serine, thiol or metallo proteases. The acid protease contained 11% carbohydrate. The alkaline protease had an Mr of 23400 and isoelectric point of 5.4. The activity of this enzyme using azocoll as substrate above 42 degrees C and was inhibited by phenylmethyl-sulphonyl fluoride and irreversible inactivated by EDTA. The enzyme was also partially inhibited by DTT but was insensitive to either pepstatin or p-chloromercuribenzoic acid.  相似文献   

7.
Large amounts of a highly purified, extracellular elastolytic protease of Vibrio vulnificus were obtained by sequential ammonium sulphate precipitation and hydrophobic interaction chromatography with phenyl-Sepharose CL-4B. The protease had an Mr of about 50,500 (estimated by SDS-PAGE), a pI of 5.7, and a temperature optimum range of 55 to 60 degrees C. The pH optimum and the results of inactivation studies suggested that the enzyme was a neutral metalloprotease. The protease had about 429 amino acid residues, and the first 20 amino-terminal amino acid residues were Ala-Gln-Ala-Asn-Gly-Thr-Gly-Pro-Gly-Gly-Asn-Ser-Lys-Thr-Gly-Arg-Tyr-Glu- Phe-Gly . The purified protease was toxic for mice (about 1.5 mg kg-1 and 4.5 mg kg-1, intraperitoneal and intravenous LD50 values, respectively), and subcutaneous injection of the enzyme elicited rapid and extensive dermonecrosis.  相似文献   

8.
To go further into the characterization of the proteolysis exocellular system of the salmonid pathogen Flavobacterium psychrophilum, the purification and characterization of a novel protease designated Fpp2 (F. psychrophilum protease 2) was undertaken. A protease (Fpp2) hydrolyzing azocasein was purified. The Fpp2 can be defined as a metalloprotease, it had an estimated molecular mass of 62 kDa with calcium playing an important role in the thermostability of the enzyme. Proteolytic activity was optimal at pH 6.0-7.0 and 24 degrees C and activation energy for the hydrolysis of azocasein was determined to be 5.4 kcal mol(-1), being inactive at temperatures above 42 degrees C. All these results are characteristic of 'cold adapted enzymes'. Fpp2 proved to be a broad range hydrolytic enzyme because in optimal conditions it was able to hydrolyze matrix and muscular proteins. It can be concluded that the Fpp1, a previously characterized 55 kDa metalloprotease, and the Fpp2 protease were produced under different physiological conditions and were immunologically as well as biochemically different.  相似文献   

9.
A novel goose-type lysozyme was purified from egg white of cassowary bird (Casuarius casuarius). The purification step was composed of two fractionation steps: pH treatment steps followed by a cation exchange column chromatography. The molecular mass of the purified enzyme was estimated to be 20.8 kDa by SDS-PAGE. This enzyme was composed of 186 amino acid residues and showed similar amino acid composition to reported goose-type lysozymes. The N-terminal amino acid sequencing from transblotted protein found that this protein had no N-terminal. This enzyme showed either lytic or chitinase activities and had some different properties from those reported for goose lysozyme. The optimum pH and temperature on lytic activity of this lysozyme were pH 5 and 30 degrees C at ionic strength of 0.1, respectively. This lysozyme was stable up to 30 degrees C for lytic activity and the activity was completely abolished at 80 degrees C. The chitinase activity against glycol chitin showed dual optimum pH around 4.5 and 11. The optimum temperature for chitinase activity was at 50 degrees C and the enzyme was stable up to 40 degrees C.  相似文献   

10.
A protease that nicks the approximately 150-kilodalton (kDa) single-chain type A botulinum neurotoxin into the approximately 150-kDa di-chain form in vitro was isolated from Clostridium botulinum type A (Hall strain) cultures. The di-chain neurotoxin generated in vitro is composed of an approximately 50-kDa light chain and an approximately 100-kDa heavy chain which are disulfide linked and is indistinguishable from the di-chain neurotoxin that forms in vivo and is routinely isolated (M.L. Dekleva and B.R. DasGupta, Biochem. Biophys. Res. Commun. 162:767-772, 1989). This enzyme was purified greater than 1,000-fold by ammonium sulfate precipitation, QAE-Sephadex Q-50, Sephadex G-100, and CM-Sephadex C-50 chromatography steps with the synthetic substrate N-benzoyl-DL-arginine-p-nitroanilide. The approximately 62-kDa amidase (protease) is a complex of 15.5- and 48-kDa polypeptides (determined by polyacrylamide gel electrophoresis) that could not be separated without sodium dodecyl sulfate. The enzyme has an isoelectric point of pH 5.73, a pH optimum of 6.2 to 6.4, an absolute requirement for a thiol-reducing agent as well as a divalent metallic cation (probably Ca2+) for activity, and a temperature optimum of 70 degrees C. Tests with several synthetic substrates indicated the high specificity of the enzyme for arginyl amide bonds.  相似文献   

11.
Cellulases find increasing prominence in sustainable production of fuel and feedstock from lignocellulosic biomass. The purification and biochemical characterization of individual components of cellulase complex is important to understand the mechanism of their action for the solubilization of crystalline cellulose. In this study, an extra-cellular endoglucanase isolated from culture filtrate of Penicillium pinophilum MS 20 was purified to homogeneity by ammonium sulphate precipitation, ion-exchange chromatography and gel filtration. The purified endoglucanase (specific activity 69 U/mg) was a monomeric protein with molecular mass of 42 kDa, as determined by SDS-PAGE. The endoglucanase was active over a broad range of pH (4-7) with maximum activity at pH 5 and showed optimum temperature of 50 degrees C. It retained 100% activity at 50 degrees C for 6 h and half- lives of 4 h and 3 h at 60 degrees C and 70 degrees C, respectively. The kinetic constants for the endoglucanase determined with carboxymethyl cellulose as substrate were V(max) of 72.5 U/mg and apparent K(m) of 4.8 mg/ml. The enzyme also showed moderate activity towards H3PO4 swollen cellulose and p-nitrophenyl beta-D-glucoside, but no activity towards filter paper, Avicel and oat spelt xylan. The activity was positively modulated by 47, 32 and 25% in the presence of Co2+, Zn2+ and Mg2+, respectively to the reaction mixture. The wide pH stability (4-7) and temperature stability up to 50 degrees C of endoglucanase makes the enzyme suitable for use in cellulose saccharification at moderate temperature and pH.  相似文献   

12.
对产自乳酸菌Enterococcuze fecalis TN-9的蛋白酶,进行了硫酸铵沉淀,DEAE—Sephadex A-25以及DEAE Cellulofine A-500离子交换层析的3步纯化和特性研究。纯化酶Native PAGE显示1条蛋白带。SDSPAGE和凝胶层析分子量分别为30ku及69ku。纯化酶最适作用温度为30℃,最适作用PH为7.5~8.0,在pH6.0~9.5和45℃以下条件下稳定,在0℃下显示了6.1%的相对活性,60℃以上热处理完全失去酶活。该酶被EDTA-2Na,Hg^2+、Cu^2+、Ni^2+、Ag^2+、Co^2+及Pepstatin A不完全抑制。Zn^2+对蛋白酶具有明显的激活作用。纯化酶作用于偶氮酪蛋白的Km和Vmax分别为0.098%和72mg/(h·mg)。该酶为N末端VGSEVTLKNS的明胶酶(Gelatinase)的一种,性质属于低温蛋白酶。  相似文献   

13.
Enterobacter sakazakii causes a severe form of neonatal meningitis that occurs as sporadic cases as well as outbreaks. The disease has been epidemiologically associated with consumption of reconstituted, dried infant formulas. Very little information is available regarding pathogenicity of the organism and production of virulence factors. Clinical and environmental strains were screened for production of factors which have activity against Chinese hamster ovary (CHO) cells in tissue culture. Polymyxin B lysate and sonicate preparations but not culture supernatants from the strains caused "rounding" of CHO cells. Subsequent studies showed that the CHO cell-rounding factor is a proteolytic enzyme that has activity against azocasein. The cell-bound protease was isolated by using a combination of polymyxin B lysis, followed by sonication of cells harvested from tryptone broth. The protease was purified to homogeneity by sequential ammonium sulfate precipitation, gel filtration chromatography with Sephadex G-100, hydrophobic interaction chromatography with phenyl-Sepharose CL-4B, and a second gel filtration with Sephadex G-100. In addition to activity against azocasein, the purified protease also exhibits activity against azocoll and insoluble casein but not elastin. The protease has a molecular weight of 38,000 and an isoelectric point of 4.4. It is heat labile and for maximal activity against azocasein has an optimum temperature of 37 degrees C and a pH range of 5 to 7. Proteolytic activity is inhibited by ortho-phenanthroline and Zincov but is not affected by phenylmethylsulfonyl fluoride, N-ethylmaleimide, and trypsin inhibitors, which demonstrates that the protease is a zinc-containing metalloprotease. The metalloprotease does not hemagglutinate chicken or sheep erythrocytes. Twenty-three to 27 of the first 42 N-terminal amino acid residues of the metalloprotease are identical to proteases produced by Serratia proteamaculans, Pectobacterium carotovorum, and Anabaena sp. PCR analysis using primers designed from a consensus nucleotide sequence showed that 135 E. sakazakii strains possessed the metalloprotease gene, zpx, and 25 non-E. sakazakii strains did not. The cloned zpx gene of strain 29544 consists of 1,026 nucleotides, and the deduced amino acid sequence of the metalloprotease has 341 amino acid residues, which corresponds to a theoretical protein size of 37,782 with a theoretical pI of 5.23. The sequence possesses three well-characterized zinc-binding and active-site motifs present in other bacterial zinc metalloproteases.  相似文献   

14.
Shi Y  Jiang Z  Han P  Zheng GX  Song KK  Chen QX 《Biochimie》2007,89(3):347-354
A beta-N-acetyl-D-glucosaminidase (NAGase) from the cabbage butterfly (Pieris rapae) was purified. The purified enzyme was a single band on polyacrylamide gel electrophoresis and the specific activity was determined to be 8715 U/mg. The molecular weight of whole enzyme was determined to be 106 kDa by gel filtration, and the result of SDS-PAGE showed that the enzyme was a heterodimer, which contained two subunits with different mass of 59.5 and 57.2 kDa. The optimum pH and optimum temperature of the enzyme for the hydrolysis of p-nitrophenyl-N-acetyl-beta-D-glucosaminide (pNP-NAG) were investigated to be at pH 6.2 and at 42 degrees C, respectively, and the Michaelis-Menten constant (K(m)) was determined to be 0.285 mM at pH 6.2 and 37 degrees C. The stability of the enzyme was investigated and the results showed that the enzyme was stable at the pH range from 4.0 to 9.0 and at the temperature below 45 degrees C. The activation energy was 83.86 kJ/mol. The reaction of this enzyme with pNP-NAG was judged to be Ordered Bi-Bi mechanism according to the inhibitory behaviors of the products. The ionization constant, pK(e), of ionizing group at the active site of the enzyme was found to be 5.20 at 39.0 degrees C, and the standard dissociation enthalpy (DeltaH(o)) was determined to be 2.18 kcal/mol. These results showed that the ionizing group of the enzyme active center was the carboxyl group. The results of chemical modification also suggested that carboxyl group was essential to the enzyme activity. Moreover, Zn(2+), Hg(2+), Cu(2+) had strongly inhibitory effects on the enzyme activity.  相似文献   

15.
AIMS: This study was developed to purify and to characterize a keratinolytic protease from the bacterium Microbacterium sp. strain kr10. METHODS AND RESULTS: Enzyme purification was carried out by sequential liquid chromatography on Sephadex G-100 and Q-Sepharose columns. The purification was about 255-fold, with a yield of 34%, as determined with azocasein as substrate. The molecular weight of the enzyme was estimated as 42,000 Da by SDS-PAGE. The enzyme had pH and temperature optima of 7.5 and 50 degrees C respectively. This keratinase was inhibited by EDTA and 1,10-phenanthroline, and analysis of metal content indicates that Zn(2+) and Mg(2+) are present. A 2(2) factorial design was developed to investigate the effect of keratinase and mercaptoacetate concentration on feather keratinolysis. Statistical analysis showed that both variables have a significant effect on hydrolysis of keratin. CONCLUSIONS: A new keratinase produced by Microbacterium sp. was purified and characterized. SIGNIFICANCE AND IMPACT OF THE STUDY: This keratinolytic enzyme offers an interesting potential for the hydrolysis of keratin wastes to be used as feed supplement or bioconversion to added-value products.  相似文献   

16.
The maltose-regulated mlr-2 gene from the hyperthermophilic archaeon Pyrococcus furiosus having homology to bacterial and eukaryal prolyl endopeptidase (PEPase) was cloned and overexpressed in Escherichia coli. Extracts from recombinant cells were capable of hydrolyzing the PEPase substrate benzyloxycarbonyl-Gly-Pro-p-nitroanilide (ZGPpNA) with a temperature optimum between 85 and 90 degrees C. Denaturing gel electrophoresis of purified PEPase showed that enzyme activity was associated with a 70-kDa protein, which is consistent with that predicted from the mlr-2 sequence. However, an apparent molecular mass of 59 kDa was obtained from gel permeation studies. In addition to ZGPpNA (K(Mapp) of 53 microM), PEPase was capable of hydrolyzing azocasein, although at a low rate. No activity was detected when ZGPpNA was replaced by substrates for carboxypeptidase A and B, chymotrypsin, subtilisin, and neutral endopeptidase. N-[N-(L-3-trans-Carboxirane-2-carbonyl)-L-Leu]-agmatine (E-64) and tosyl-L-Lys chloromethyl ketone did not inhibit PEPase activity. Both phenylmethylsulfonyl fluoride and diprotin A inhibited ZGPpNA cleavage, the latter doing so competitively (K(lapp) of 343 microM). At 100 degrees C, the enzyme displayed some tolerance to sodium dodecyl sulfate treatment. Stability of PEPase over time was dependent on protein concentration; at temperatures above 65 degrees C, dilute samples retained most of their activity after 24 h while the activity of concentrated preparations diminished significantly. This decrease was found to be due, in part, to autoproteolysis. Partially purified PEPase from P. furiosus exhibited the same temperature optimum, molecular weight, and kinetic characteristics as the enzyme overexpressed in E. coli. Extracts from P. furiosus cultures grown in the presence of maltose were approximately sevenfold greater in PEPase activity than those grown without maltose. Activity could not be detected in clarified medium obtained from maltose-grown cultures. We conclude that mlr-2, now called prpA, encodes PEPase; the physiological role of this protease is presently unknown.  相似文献   

17.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:6,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

18.
温和气单孢菌YH311硫酸软骨素裂解酶的分离纯化与固定化   总被引:1,自引:0,他引:1  
通过硫酸铵沉淀、QAESephadex-A50柱层析及Sephadex-G150凝胶过滤等纯化步骤,对源自温和气单孢菌YH311的ChSase进行了分离纯化。结果表明,ChSase经上述纯化步骤后被纯化了55倍,其最终纯度可达95%以上,比活为31.86u/mg。经SDSPAGE及IFE测定可知该酶的分子量约为80kD,等电点为4.3~4.8。将纯化后的ChSase用海藻酸钠或纤维素固定化后,ChSase的热稳定性及贮存稳定性均可得到大幅度的提高:固定化酶用80℃水浴处理120min或于4℃冰箱放置30d后仍可保留50%以上的相对活力;但固定化酶的收率较低,仅为18.56%和18.86%。  相似文献   

19.
LL-H, a virulent phage of Lactobacillus delbrueckii subsp. lactis, produces a peptidoglycan-degrading enzyme, Mur, that is effective on L. delbrueckii, Lactobacillus acidophilus, Lactobacillus helveticus, and Pediococcus damnosus cell walls. In this study, the LL-H gene mur was cloned into Escherichia coli, its nucleotide sequence was determined, and the enzyme produced in E. coli was purified and biochemically characterized. Mur was purified 112-fold by means of ammonium sulfate precipitation and cation-exchange chromatography. The cell wall-hydrolyzing activity was found to be associated with a 34-kDa protein. The C-terminal domain of Mur is not essential for catalytic activity since it can be removed without destroying the lytic activity. The N-terminal sequence of the purified lysin was identical to that deduced from the nucleotide sequence, but the first methionine is absent from the mature protein. The N-terminal part of this 297-amino-acid protein had homology with several Chalaropsis-type lysozymes. Reduction of purified and Mur-digested L. delbrueckii cell wall material with labeled NaB3H4 indicated that the enzyme is a muramidase. The temperature optimum of purified Mur is between 30 and 40 degrees C, and the pH optimum is around 5.0. The LL-H lysin Mur is stable at temperatures below 60 degrees C.  相似文献   

20.
A purification method was developed to isolate Legionella pneumophila cytotoxic protease in a form suitable for biological assays. Culture supernatant of a clinical isolate of L. pneumophila, Knoxville 1 strain, was used as the starting material. The protease was purified by FPLC on a Mono Q column followed by ultrafiltration. The isolated proteolytic enzyme has a specific activity of 90 azocasein units/mg protein and is a 42 kDa monomeric protein as determined by SDS-PAGE and gel filtration chromatography. It is heat-labile and toxic to a variety of cells e.g. McCoy, SIRC, HeLa, and rhabdomyosarcoma cells, baby hamster and green monkey kidney cells, and human embryonic lung fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号